
IMImm



Mai&!

LIBRARY OF

WELLES LEY COLLEGE

From the Gift of

Wellesley College Alumnae

Association

in memory of

Helen A. Shafer



Digitized by the Internet Archive

in 2012 with funding from

Boston Library Consortium Member Libraries

http://archive.org/details/fourthdimensionsOOmann









The Fourth Dimension

Simply Explained

A COLLECTION OF ESSAYS SELECTED FROM

THOSE SUBMITTED IN THE SCIENTIFIC

AMERICAN'S PRIZE COMPETITION

WITH AN INTRODUCTION

AND EDITORIAL NOTES

BY

HENRY P. MANNING, Ph.D.

Associate Professor of Mathematics in Brown University

NEW YORK:
MUNN & COMPANY, In<

1910



Copyright 1910

BY

MUNN & COMPANY, Inc.

Entered at Stationers' Hall, London, 1910

ALL RIGHTS RESERVED UNDER BERNE CONVENTION

PRINTED IN THE UNITED
STATES OF AMERICA BY
MACGOWAN & SUPPER
New York, N. Y.



PREFACE

IN
January, 1909, a friend of the Scientific Ameri-

can, who desired to remain unknown, paid into

the hands of the publishers the sum of Five Hun-
dred Dollars, which was to be awarded as a prize for

the best popular explanation of the Fourth Dimension,

the object being to set forth in an essay not longer

than twenty-five hundred words the meaning of the

term so that the ordinary lay reader could understand

it. The essays, 245 in number, were submitted under

pseudonyms, in accordance with the rules drawn up by

the Editor of the Scientific American, and were judged

by Prof. Henry P. Manning, of Brown University, and

Prof. S. A. Mitchell, of Columbia University.

The Five Hundred Dollar prize was awarded by

the judges to Lieut. -Col. Graham Denby Fitch, Corps

of Engineers, U. S. A. The prize-winning essay was
published in the Scientific American of July 3rd, 1909,

and three essays, which received honorable mention,

made their appearance in the issues of July 10th, 17th,

and 24th, 1909.

Despite the character of the subject, extraordinary

interest was manifested in the contest. Competi-

tive essays were received not only from the United

States, but from Turkey, Austria, Holland, India,

Australia, France, and Germany. In fact, almost every

civilized country was represented. Because of this

unexpected interest in the subject, it has seemed advis-

able to preserve in permanent form a few of the essays
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which were submitted. i\ccordingly Prof. Henry P.

Manning has chosen from the essays those which lend

themselves best for the purpose of a popular book on

the Fourth Dimension ; in other words, those which

present the subject from as many different points of

view as possible. With the exception of the prize-

winning and honorably mentioned essays, no attempt

has been made to arrange the essays in the order of

merit.

The publishers trust that the brief expositions of

the Fourth Dimension here offered may serve to

popularize a topic which has hitherto been unfor-

tunately classed with such geometrical absurdities as

the squaring of a circle and the trisection of an angle.
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INTRODUCTION
BY HENRY P. MANNING, ASSOCIATE PROFESSOR OF

MATHEMATICS IN BROWN UNIVERSITY.

I.

THE geometry studied in the schools is divided

into two parts, Plane Geometry, or Geometry
of Two Dimensions, and Solid Geometry, or

Geometry of Three Dimensions, and the study of

these geometries suggests an extension to geometry of

four or more dimensions. In a plane, for example, one

line may be perpendicular to another, and the position

of any point can be determined by starting from a

known point and measuring in two given perpendicu-

lar directions. In Solid Geometry there may be three

mutually perpendicular lines, and the position of any

point can be determined by starting from a known
point and measuring in three given perpendicular di-

rections. Thus the question arises : Why may there

not be a geometry with four mutually perpendicular

lines, in which the position of a point is determined

by measuring in four perpendicular directions ? Again,

the area of a rectangle is expressed as the product of

its base and altitude, and in Plane Geometry the things

that are studied are made up of straight or curved

lines or are bounded by such lines. The volume of a

rectangular solid is expressed as the product of its

three dimensions, and the things that are studied in

Solid Geometry are mostly made up of flat or curved

surfaces or are bounded by such surfaces. Why then
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may there not be rectangular figures of four dimensions

and a study of things which we may call flat or curved

spaces ?

The Geometry of Three Dimensions is more ex-

tensive than Plane Geometry, yet nearly everything in

it is more or less analogous to something in the plane

;

and so the Geometrv_of Four Dimensions would be still

more extensivef^yet related to the three-dimensional

geometry asr the three-dimensional geometry is related

to the t\vo-dimensional, so that it would seem almost

possible to tell at once what the details of such a

geometry Avould be.

Tiese suggestions come more readily when the real

'subject matter of geometry and the nature of geometri-

cal reasoning are understood. Geometry does not deal

with material things like a string or sheet of paper, but

with abstract lines and surfaces. Nor does geometry

deal with actual facts. It only shows what would be

true if certain other things were true. We apply some
statement of geometry to a string or to a sheet of

paper whenever the conditions of the statement seem

to be fulfilled, and the correctness of the result depends

upon whether the conditions are fulfilled.

Even the axioms of geometry, formerly regarded as

self-evident truths, are now understood to be merely

hypotheses. The mathematician does not say that the

axioms are true. He develops a set of propositions

that follow necessarily from the axioms and are in-

volved in the axioms themselves, but the axioms them-

selves he can change, and by taking different sets of

axioms he can build up different geometries, each

geometry mathematically true, true in that it is a set

of statements (theorems) necessarily involved in the

set of axioms upon which it is built. It is necessary
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that the axioms chosen for a geometry shall be consis-

tent ; they must not contradict one another. They ought
also to be independent; no statement should be taken

as an axiom if it necessarily follows from the other

axioms. Finally, the set of axioms should be complete,

so that the geometry is completely determined without

requiring additional axioms.

We choose, then, one of these geometries and apply

it to our lives. We choose that geometry whose axioms

and resulting theorems seem best to express the con-

ditions of our existence, but this choice is not a part of

mathematical reasoning; it is a matter of experiment

and of experience.

Finally, the mathematician may go still further and

leave undefined the subject matter of his geometry. He
takes certain elements, calling them points and lines,

and certain relations which he calls relations of position

and magnitude. Without defining the elements or the

relations he assumes that the elements have these re-

lations. The statements that the elements have the re-

lations are his axioms. From the axioms he derives

other relations which necessarily follow. The state-

ments of these relations are his theorems.

This is abstract geometry.* The terms used are

meaningless, whether they are the words point, line,

intersect, etc., borrowed from the ordinary geometry,

or new words invented for the purpose. It is easier,

of course, to assign meanings to the terms at the be-

ginning and give to the geometry a concrete form as

it develops, especially if the concrete form is not too

difficult for us to picture in our minds, but it is possi-

ble to construct the geometry abstractly and then to

apply it by giving concrete meanings to its terms. Bv

* This theory of abstract geometry is referred to in Essay II., p. 58.
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changing the meanings of the terms we can give to the

same geometry more than one interpretation even when
the geometry is first constructed in concrete form.

When the student gets this view of geometry fixed

in his mind he is more ready to entertain the notion

of a geometry of four or more dimensions. He sees

no difficulty in assuming a set of axioms which includes

the hypothesis that there are points outside of a given

space of three dimensions when points and space are

themselves words without meaning. The difficulty

which he meets in contemplating such a geometry or

any geometry comes when he attempts to apply it to

our existence or to some imagined existence where its

application seems to contradict or to transcend our

experience.

We have said that the same geometry can have

more than one interpretation. Thus we shall see

presently that a certain two-dimensional geometry may
be interpreted as spherical geometry if we make the

term straight line mean great circle. With a proper

definition of length or distance our ordinary geometry-

may be interpreted as a geometry in which the circles

through a certain fixed point are taken for straight

lines. And so we might give other illustrations. Now
the abstract geometry of four dimensions may be

realized as a concrete geometry by letting the word
point mean straight line in our space. It takes four

numbers to determine the position of a straight line,

and all the relations of the Geometry of Four Dimen-

sions are represented by relations of these lines and by

figures formed of them.*

But these interpretations seem far-fetched, and the

*See Essay XIII., p. 159; see also C. J Keyser, "Mathematical Emancipa-

tions," The Monist, 1906.
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abstract geometry itself is of interest chiefly to those

few even among mathematicians who have made the

theories of geometry their special study. The geometry

of straight lines in space, for example, is of interest and

value in itself, but that which especially interests us

now is the interpretation of Geometry of Four Dimen-

sions in its most natural way, where points mean points

and straight lines mean straight lines and the relations

considered are the same as those which we have in ap-

plying two-dimensional and three-dimensional geom-
etry to our actual existence. Even when the mathe-

matician makes use of this geometry in the study of

some other branch of mathematics it is in this natural

interpretation that he wants it.

The most notable of the geometries developed from

different sets of axioms are two, commonly called non-

Euclidean geometries. These geometries are quite

fully explained in the second essay of this collection.*

Neither Lobachevsky nor Bolyai thought of geometry

in the abstract way that we have indicated, but the

Hyperbolic Geometry, which they discovered, was one

which would seem to fit very well with our experi-

ence if we confined our attention to a small portion of

a plane or to a small region of space. The same is

true of the Elliptic Geometry. We cannot even say

that the geometry of our space is Euclidean and not

one of these two. Now the non-Euclidean geometries

of two dimensions can be applied to certain curved

surfaces in ordinary space (the space of Euclidean

Geometry) if we interpret the term straight line to

mean geodesic or straightest line. Some writers have

taken this as an explanation of the non-Euclidean

* See also " Non-Euclidean Geometry," by Henry P. Manning. Ginn &
Company.
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geometry and supposed that the plane of this geometry
is not a plane and that the straight line is not a

straight line.

•In the same way that we have curved surfaces in

ordinary space to which we can apply the non-Euclid-

ean geometries of two dimensions, so in space of four

dimensions we have curved spaces or hypersurfaces to

which we can apply the non-Euclidean geometries of

three dimensions, and some have taken this fact as com-
pleting the explanation of these geometries, erroneously

supposing that they assume our space to be a curved

space in space of four dimensions. Some have even

thought that the Geometry of Four Dimensions was
invented for the purpose of explaining the non-Eu-

clidean geometries. The non-Euclidean geometries do

not themselves assume that space is curved, nor do the

non-Euclidean geometries of two and three dimensions

make any assumption in regard to a fourth dimension.

In fact, we may suppose that space of four dimensions,

if there is such a space, is itself non-Euclidean, elliptic

or hyperbolic as the case may be, and that our space is

a three-dimensional space of the same kind without

any curvature whatever. The notion of a geometry

of four dimensions does not owe its origin to the non-

Euclidean geometries. We have the same breaking

away from tradition in both and both grow out of

modern theories of the general nature of geometry, but

the geometries of higher dimensions owe their origin

to a natural extension from two and three dimensions

and the mathematician has other uses for them equally

as important as is their relation to the non-Euclidean

geometries.

The notion of geometries of higher dimensions takes

en its chief importance in Mathematics from the paral-
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lelism between Algebra and Geometry. Algebra had
been used to some extent in the proofs of theorems

which involve proportion and other relations of mag-
nitude, but the study of Algebra and Geometry to-

gether was first systemized in Analytic Geometry and
became thereafter the basis of a great part of Mathe-
matics. Now certain forms of Algebra correspond to

Plane Geometry and certain other forms to Solid

Geometry. Besides these there are also what might

be called one-dimensional forms, and no difficulty is

found in realizing the corresponding geometry as a

geometry of points on a line, although this geometry

would hardly have attracted attention had it not been

for the needs of Algebra.

This combination of Algebra and Geometry, which

appears at first sight to serve chiefly as an aid to Geom-
etry, turns out to be of greater service to Algebra.

This happens in two ways'. The language of Geometry

furnishes a number of convenient terms for things

which would otherwise have to be awkwardly de-

scribed, and the visual conceptions of Geometry ap-

plied to the forms of Algebra make them seem less

abstract and easier to understand. We have these ad-

vantages for the forms of Algebra which correspond

to geometries of one, two, and three dimensions. Yet

there is no reason in Algebra for the distinction be-

tween these forms and other forms, and when we have

become accustomed to apply geometrical terms in Alge-

bra we begin to use them in connection with all alge-

braic forms and thus to secure the first of the two

advantages mentioned as derived from the combination

of z\lgebra and Geometry.*

But it is from the visual conceptions of Geometry

See Essays V., IX., and XIV.
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that the mathematician gets his chief assistance when
he applies Geometry to Algebra, and since the geome-
tries of higher dimensions are necessary to the com-
plete parallelism of the two, he seeks to acquire these

conceptions here also by trying to imagine our exist-

ence in a space to which these geometries apply. This

is especially true of the Four-Dimensional Geometry
to which correspond some of the most important forms

of Algebra.

We find, then, two ways in which the geometry of

four or more dimensions is of importance to the mathe-

matician. The notion of such a geometry as a logical

system of theorems involved in a set of axioms is im-

portant to the student of abstract geometry, and the

conception of space to which these geometries apply

is of great assistance in the application of geometry

to other mathematics. No one can consider himself

completely equipped as a mathematician without some
knowledge of the geometries of higher dimensions.

II.

The notion of geometries of n dimensions began to

suggest itself to mathematicians about the middle of

the last century. Cayley, Grassmann, Riemann, Clif-

ford, and some others introduced it into their mathe-

matical investigations. Then from time to time dif-

ferent mathematicians took it up in different ways.

Thus the first volume of the American Journal of

Mathematics begins with an article in which Professor

Newcomb shows that a sphere may be turned inside

out in space of four dimensions without tearing, and

in the third volume of the same journal Professor

Stringham has given us a full account of the regular
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figures in space of four dimensions corresponding to

the regular polyhedrons of our three-dimensional

space. Others have written on the theory of rotations

and on the intersections and projections of different

figures. The great Italian geometer Veronese has an
extensive work on Geometry of n Dimensions with

theorems and proofs like those of the text-books stud-

ied in our schools. In the last few years there have
been many articles in the popular magazines, and some
books have been published to explain more particularly

what the fourth dimension is.* The fourth dimension

is the first of the higher dimensions and in this book
it alone is considered.

Geometry of Four Dimensions is not only of im-

portance to the mathematician, but it is also of interest

in certain other lines of study. Thus it involves ques-

tions of space which concern the philosopher; efforts

to understand it call into exercise our space perceptions

and so attract the attention of the psychologist; and

attempts to utilize the theories of hyperspace in the

explanation of physical and other phenomena serve to

bring the subject under the notice of those working in

other branches of science. Moreover, the many curi-

ous forms and relations that appear in its development

excite popular interest; for example, the relation of

symmetrical forms as one of position only, a form

being changeable into its symmetrical by mere rota-

tion ; the plane as an axis of rotation, and the possi-

bility that two complete planes may have only a point

in common; the possibility that a flexible sphere may
be turned inside out without tearing, that an object

may be passed out of a closed box or room without

penetrating the walls, that a knot in a cord may be

* Some references are given at the end of this introduction.
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untied without moving the ends of the cord, and that

the links of a chain may be separated unbroken.

These curious features of space of four dimensions,

while exciting our interest, baffle us in our study. Not
only the possibility of such things but the facts them-

selves seem beyond our comprehension. In Plane and
Solid Geometry we can draw figures and construct

models ; we are constantly seeing the things themselves

and therefore, even when they are complicated, we can

readily picture them in our minds. Geometry of Four
Dimensions, however, in its ordinary application, deals

with things which no one has known in experience or

can imagine. Its very words seem to have no mean-

ing. This is especially true at first, and any facility in

perceiving the relations of these words, if acquired at

all, must come slowly and of itself. In our efforts to

understand the subject we naturally desire a perception

of these things at the beginning. All that we should

try to do, however, is to remember the various rela-

tions and to become familiar with them. In time they

may perhaps acquire some of the vividness of the con-

ceptions of three dimensional geometry. If we expect

too much when we begin this study we shall be disap-

pointed and discouraged. If we understand at the out-

set how little we should expect, we shall be in an atti-

tude toward the subject that will be most conducive to

success in its mastery.

It follows that we shall not find this subject an easy

one to understand. It is something that we have to

read a little at a time, to read repeatedly and to think

over. We have to look at it from different points of

view and to examine different ways of expressing it.

Thus there are distinct advantages in having the sub-

ject presented in several short essays by different
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writers. There are advantages in the repetition, in the

different points of view, and in having brief indepen-

dent chapters that can be taken up and studied each

by itself.

The essays in this book are all non-mathematical or

popular in their treatment. It will assist us, therefore,

if we understand the limitations of this form of pre-

sentation. From a comparison of the lower dimen-

sional geometries we derive analogies for the Geometry
of Four Dimensions and the analogies are so complete

that the subject can be very fully explained in a non-

mathematical way. The analogies are a guide, even

to the mathematician, but the geometry does not de-

pend on these analogies. As a system of theorems and

proofs it is built up from its axioms by a process of

logical reasoning just as the lower geometries are built

up. If we wish to be convinced of the consistency of

this geometry, of its truth as a mathematical system,

we should study it mathematically. A non-mathemat-

ical exposition should be received solely as an explana-

tion of the geometry itself, and the reader should un-

derstand clearly that it is designed not to convince him

even of the possibility of such a geometry, but only to

show him what it is.

The adoption of such an attitude on the part of the

reader will be a long step toward accomplishing all

that can be achieved through a non-mathematical treat-

ment of the subject. If, however, the analogies are

viewed as arguments, a person of skeptical mind will

be apt to suspect that there is some fatal defect beneath

their plausible exterior. Even if a philosophical writer

wishes to use the analogies as well as the consistency

of this geometry as an argument for the actual exist-

ence of four-dimensional space, such a consideration of
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the subject had better be postponed by the reader until

after he has become familiar with the geometry itself.

As regards some of these essays it is proper to caution

the reader that they seek to advocate certain views

rather than merely to give a clear description of the

fourth dimension.

There is another way in which the principle of ana-

logy may be used. By imagining two-dimensional

beings living in a plane and unable to perceive anything

of a third dimension we get a vivid idea of our own
relation to four-dimensional space. A consideration of

what ought to be their attitude toward any concep-

tions of a space of three dimensions makes clearer what
should be our attitude toward conceptions of a higher

space. This point of view is made more interesting by

presentation in story form of a picture of life as it

might be supposed to exist in a two-dimensional world.

It is not necessary for such a presentation to go into

all the details of the two-dimensional existence. A too

minute description of such an existence would over-

burden the narrative with tedious explanations that

would cause us to lose sight of its main purpose. But

a story written so as to bring out skillfully a few of

these relations does very much to help us in under-

standing what should be our attitude toward the higher

geometry.*

The Geometry of Four Dimensions based on a suit-

* Such a book has recently been written by C. H. Hinton : "An Episode of

Flatland." But much better is a little book by E. A. Abbot called " Flatland "

There the interest rests entirely on the relations of space which this book is

intended to explain, and we never for a moment lose sight of these relations.

In Hinton's book the interest rests largely on the personalities and fortunes

of the characters, and our attention is called away from the geometrical cir-

cumstances of their lives. Moreover, his circle-world is more unreal than the

world of " Flatland," although, perhaps, more closely analogous to our earth

as it exists in space of three dimensions.
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able set of axioms and applied in the ordinary way to

points, lines, etc., forms a definite system. But there is

much that is arbitrary when we come to clothe our

ideas in physical form and undertake to present a ma-

terial world either of two or four dimensions, filled

with two-dimensional or four-dimensional matter.

Even to the physicist matter is a mystery and we can

develop different theories of it very much as we build

up geometries from different sets of axioms. Some
writers of these essays have made quite unwarranted

statements as to what must be the nature of matter.

We cannot say that we have perceived all the proper-

ties of matter as it exists, and we cannot call it absurd

to put matter with other properties into an imagined

space. Thus in order to throw light upon our rela-

tions to a supposed space of four dimensions we might

suppose the existence of two-dimensional beings even

if such an existence were impossible, just as we might

imagine the moon inhabited by intelligent beings in

order to give a more vivid description of the appear-

ance of the moon's surface by describing what they

would see. We do not know, indeed, but that the

moon is inhabited by beings with bodies adapted to

their environment, capable in some way of life, growth,

and motion, without air or water.

In thus supposing the existence of two-dimensional

beings it would be interesting in itself to see how far

we can go in these details. Thus we may suppose that

what we call two-dimensional matter is really three-

dimensional, and that the two-dimensional beings are

really three-dimensional, either with a slight thickness

in the third dimension, or at least with a thickness

which the beings themselves are unable to recognize.

But we may also suppose them all to be really 'two-
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dimensional, and we can try to carry out the details of

such an existence. It may be that a particle of matter

is only a bundle of forces, attractive and repellent, and

there is no difficulty in thinking of such forces lying

entirely in one plane. A two-dimensional being, meet-

ing some object, might find it, that is, its contour, hard

or soft ; light waves traveling in this plane might be

reflected by objects, the edges of objects, and produce

images on the retina line of the two-dimensional

being's eye ; and sound waves might strike a vibrating

chord in the two-dimensional being's hearing cavity.

Objects could be fastened together, either by adhesion

or by one object grasping another. Mechanical con-

trivances and organic bodies would be of comparatively

simple structure, if, as in our world, two entirely sep-

arate objects had no appreciable influence on each

other. No object could have an opening through it

like a hole and there would be nothing to correspond

to our pipes. If a house had more than one outside

door open, or if its windows were opened, it would be

divided into separate parts. It would seem as though

such simple forms and structures as would make up a

two-dimensional existence would allow but little mental

development to the inhabitants, but we find nothing

impossible in the supposed structure of such a world.

When we come to consider a two-dimensional space

and a three-dimensional space together, the two-dimen-

sional space lying within the three-dimensional, we
have a considerable choice as to the nature of matter

in these spaces, and any apparent difficulties may be

ignored without affecting the usefulness of these sup-

positions for purposes of analogy. We may, however,

be interested in the question for its own sake and try

to see how far we can carry the details of such a com-
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bination of spaces. Let us suppose that the two-dimen-
sional matter of the plane inhabited by our two-dimen-

sional beings has the property of reflecting in some
measure light that comes from outside of this plane, so

that three-dimensional beings are able to see the two-

dimensional matter. They can see, then, the insides

of the two-dimensional beings and the insides of their

houses and within all their closed compartments. If

also they are able to take objects out of this plane and

put them back wherever they please, they can take them
out of the closed compartments.

A study of the laws of four-dimensional matter,

Four-dimensional Physics, would be very interesting,

but we can give some idea of the various forms which

occur, and the possible motions of things, without

going too carefully into the theory or using the terms

of science with great exactness. Our object is to give

some idea, something as near a picture as we can, of

the space of four dimensions, and we shall impose

limitations upon the beings which we describe, or re-

move limitations, according to the course which seems

best adapted to our object.

We observe the forms and positions of objects very

largely by sight. Now the organs of sight of a being

confined to some particular space may be supposed

suited to the dimensions of his space. The picture

formed in the retina of our eye is two-dimensional, the

retina is a surface. A two-dimensional being, unable

to perceive anything outside of his plane would have

a one-dimensional retina, or at least his picture of an

object in his world would be a mere line, different

pictures being distinguished by the lengths, colors, and

shading of these lines. The retina of a four-dimen-

sionai being would be three-dimensional if he is to
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receive separate impressions from all the rays of light

within a given angle of vision. In fact, the boundary
of an opaque object, the part which alone he can see,

is three-dimensional as is always the boundary of ob-

jects in space of four dimensions.

It is not easy for us to imagine such pictures, and

so we can attempt to get an impression of the shapes

of objects by supposing that a three-dimensional being,

a person like ourselves, could pass through a series of

parallel three-spaces (three-dimensional spaces) and in

each three-space examine that portion of the object

which lies in this space, that section of the object.

This is just as we might suppose a two-dimensional

being able to pass through a series of planes and in

each plane to see the section of an object made by that

plane. The section which we should see of a four-

dimensional object would be a solid whose surface

forms a part of the three-dimensional boundary of the

object. This way of studying four-dimensional objects

is discussed quite fully in Essay VII. (See also Essay

V, page 85.)

There is another somewhat similar way of studying

an object that we may find quite useful. We can im-

agine ourselves turning from one three-space into

another perpendicular three-space. That is, by dis-

carding one of the directions in our space we can sup-

pose that we take into view the fourth direction, which

goes away from our space, and so get its relation to

two of our directions. We shall describe the section

of an object made by any three-space as what we can

see in that three-space. We shall do this particularly

with reference to the different sections of an object

obtained at any point by taking different perpendicular

three-spaces.
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One of the first things, for example, that we con-

sider in studying Geometry of Four Dimensions is the

line perpendicular to a three-space; such is the line

which goes out from a point in our space in a new
fourth direction perpendicular to all the lines of our

space through that point.* If we can let go of one of

the dimensions of our space, keeping only that part

which lies in a certain plane, and take into view the

new fourth dimension, we shall see a plane and a line

going out from it, perpendicular to all the lines of it,

something with which we are perfectly familiar.

As another example consider two absolutely per-

pendicular planes. If we take a plane through a point

O and the line which is perpendicular to the plane at 0,

all in our space, and then take the line through in

the fourth direction perpendicular to all the lines

through in our space, we shall have a plane through

O and two lines both perpendicular to the plane and

perpendicular to each other. These two lines them-

selves determine a plane every line of which through

is perpendicular to the first plane. The two planes are

said to be absolutely perpendicular. (See Essay I, page

45, where the expression completely perpendicular is

used. ) The most that we could see in any three-space

of two absolutely perpendicular planes would be one

of the planes and a single line of the other plane, a line

passing through O perpendicular to the plane that we
see. The other plane cuts through the space along

this line. These planes meet only at the point O.

Indeed, two planes which do not lie entirely in one

* A point starting from the center of a sphere in our space and moving off

on a line perpendicular to our space will not approach any portion of the

surface of the sphere, but will move away at the same rate from all points of

this surface. This is the way an object can pass out of a closed room or box

without penetrating the walls, as stated in many of the essays.
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three-space can never have more than a point in com-

mon, and when two planes have just a point in common
the most that we could see in any three-space would

he one of the planes and a single line of the other.

If two planes are absolutely perpendicular to a third

at two points and 0' they lie in a single three-space.

In this three-space we should see them completely, and

only a single line of the third plane. The line passes

through O and 0' and we see it as perpendicular

to the two planes. On the other hand, in a three-space

containing the third plane we can see all of it but only

a single line of each of the two planes absolutely per-

pendicular to it.

III.

We proceed to give some further account qf the

Four-dimensional Geometry. We do not intend to re-

peat what is given in the essays except so far as may;

be necessary in order to correct possible erroneous im-

pressions, or to amplify certain points. It may be that

the reader will find it better to read some of the essays

before going on with this Introduction.*

When two planes are absolutely perpendicular at a

point ' , any point in one can go completely around O
and around the other plane keeping all the time at the

same distance from O and from the other plane. Thus
we can go around a plane in space of four dimensions

just as in our space we can go around a line. A two-

dimensional being cannot go around a line in his

plane; it divides the plane completely. And so we
cannot go around a plane in our space for it divides

* There is quite adiversit}' in the use of terms in Geometry of Four Dimen-
sions. Most of the terms used in this book, however, are defined when used

or are readily understood.



SIMPLY EXPLAINED 25

our space completely. But in space of four dimen-

sions a plane, though having two dimensions, lacks

two, and in these we can go around the plane keeping

all the time at a given distance from one particular

point of it. If we can discard one of the dimensions

of the plane, taking from the plane only a line, and

put ourselves into a three-space that contains the ab-

solutely perpendicular plane, we shall find that the

path of the motion is all in view, appearing to us now
as a path going around a line.

A plane can rotate on itself around one of its points.

If two planes are absolutely perpendicular at a point O,

one of them, rotating on itself in this way, remains

absolutely perpendicular to the other. We may speak

of the plane as rotating about the fixed plane as axis

plane. At each point of a fixed plane is an absolutely

perpendicular plane and these absolutely perpendicular

planes may all rotate together about the fixed plane.

This is the same as when we have in our three-space a

fixed line and at each point a plane perpendicular to

the line. Thus we think of objects in our space or of a

portion of space as rotating about a fixed axis line;

and in the same way we can think of objects in four-

space or of a portion of four-space as rotating about a

fixed plane as axis plane. In this rotation the parts

are not distorted; they retain their form rigidly and

need not be flexible.

We may also use a curved surface as axis of a rota-

tion if we allow for a slight amount of distortion. We
will use the term material surface for a substance hav-

ing two dimensions of considerable extent and two

dimensions very small, just as we may say in our space

that a piece of cloth has two dimensions of considerable

size and one dimension very small, or that a string has
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one principal dimension and two dimensions very

small. If we have such a material surface that is

flexible, we may rotate it, each portion on itself, so

that two opposite sides of it shall exchange places.

A material surface, like a piece of cloth with a slight

thickness in the fourth dimension, will have surfaces

all around it. We may say that a turning of such

a substance on itself through 180 deg. brings the

same two sides back into our space, each on the

side originally occupied by the other. The different

parts of the surface do not interfere with one another

in this process, and so it may take place whether

the surface is open, any piece of a material surface,

or completely closed like a hollow rubber ball. In our

space a rubber band may be twisted on itself so as to

be turned inside out. This corresponds exactly to the

turning of a sphere inside out in space of four di-

mensions.

The relation of symmetrical figures is referred to in

several of these essays but not always quite correctly.

Symmetrical figures can best be understood by consid-

ering positions of symmetry with respect to a point,

line, or plane.

Figures in a plane symmetrical with respect to a

point are equal, for one can be turned about the point

to the position of the other. Figures in a plane sym-

metrical with respect to a line, however, cannot be

made to coincide without turning one of them over;

turning it through space. Such figures would be re-

garded by two-dimensional beings as truly symmet-

rical, with corresponding parts equal, but arranged in,

opposite orders, so that it would never be possible to

make them coincide.

Figures in space of three dimensions symmetrical
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with respect to a line can be made to coincide by turn-

ing one of them about the line. On the other hand,

figures symmetrical with respect to a point and figures

symmetrical with respect to a plane, unless they are

actually plane figures, are truly symmetrical and can

never be made to coincide by a motion in space. Fig-

ures symmetrical with respect to a plane can be made
to be symmetrical with respect to a point, and figures

symmetrical with respect to a point can be made to be

symmetrical with respect to a plane. Suppose, for

example, two figures are symmetrical with respect to

a plane. We connect them by a rod perpendicular to

the plane and join pairs of corresponding points by

lines, say elastic cords. Then if we turn one of them
half-way around on the rod as axis the elastic cords

will all cross one another at the point where the axis

rod meets the original plane of symmetry, and they

will become symmetrical with respect to this point.

Now in space of four dimensions figures may, be

symmetrical with respect to a point, a line, a plane, or

a three-space. Figures symmetrical with respect to a

point may be made to be symmetrical with respect to a

plane and vice-versa, and figures symmetrical with re-

spect to a line may be made to be symmetrical with

respect to a three-space and vice-versa. Figures sym-

metrical with respect to a three-space are truly sym-

metrical and can never be made to coincide by any

motion in four-dimensional space. They may be said

to have their parts arranged in opposite orders. But

figures symmetrical with respect to a plane may be

made to coincide by rotating one of them about the

plane as axis plane through a rotation of 180 degrees,

and this is true whether they are four-dimensional fig-

ures or three-dimensional figures. Thus to a four-
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dimensional being things which we call symmetrical

do not differ at all except in position.

This is a very striking fact. A right glove turned

over through space of four dimensions becomes a left

glove, a right shoe becomes a left shoe. A right-handed

man becomes a left-handed man. He does not use a

different hand after the operation, but the hand which
he uses now appears to everybody else as his left hand.

In fact, his point of view is turned around, so that to

him everybody else appears to be changed. Letters

appear to him to be turned backward like printer's type,

the hands of a clock go backward, the world becomes

to him a looking-glass world.

There is a distinction not understood by some of

these writers between turning an object over and turn-

ing it inside out. A right glove turned inside out in

our space becomes a left glove and a right glove turned

over in space of four dimensions becomes a left glove,

but when the glove is turned over it is not turned inside

out.* On the other hand, a right glove may be turned

inside out in space of four dimensions in the same way
that a closed rubber ball may be turned inside out.

This process has been described in a preceding para-

graph. The fingers and thumb do not come out

through the wrist, but every part by itself in its own
place is turned over with only a little possible stretch-

ing and a very slight changing of the positions of the

different particles of matter which go to make up the

glove. In this process, however, the glove does not

become a left glove, but remains a right glove. We
can get the analogy by supposing that we have in a

plane a nearly closed figure. This can be turned into

* Even Schubert makes this mistake in his article, " The Fourth Dimension,"

The Monist, Vol. III., page 429.
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its symmetrical form by opening it out straight and

bending it over the other way so that it is turned inside

out This process takes place entirely in the plane and

can be performed by a two-dimensional being. The
figure may also be changed into its symmetrical form

by being turned over, but in this process it is not turned

inside out at all. On the other hand, if it is sufficiently

flexible, it may be turned inside out by twisting each

part upon itself through 180 degrees, and in this pro-

cess it is not changed into its symmetrical form.

A hypersolid, that is, a portion of four-dimensional

space, may be separated into two parts by a three-space.

Thus a section, cutting a hypersolid into two parts,

will be three-dimensional. A plane cannot separate

two parts of a hypersolid any more than a line can

separate two parts of a solid in our space. We may
make a line go through a solid, cutting out a hole. This

may happen also to a hypersolid. A rod or material

line, having one principal dimension and the other three

very small, will pierce a hypersolid and make a hole

through it. But we may also pierce a hypersolid with

a flat plate, something having two principal dimensions

and two dimensions very small. The plate passing

through the hypersolid could extend indefinitely in its

two principal dimensions but the hypersolid would not

fall apart. Thus we have two kinds of holes in space

of four dimensions, one-dimensional holes and two-

dimensional holesi

A one-dimensional hole may pass through an object

in a direction away from our space and the object will

appear to us entirely closed but hollow like a hollow

sphere. A rod or cord may be passed through such a

hole and held by it in position, but a rod or cord passed

through a two-dimensional hole will slip away at once
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even if we hold its ends. A rod bent around so that

its ends can be welded together becomes a ring. The
hole through a ring is two-dimensional. Two rings

fall apart, but a ring and a hollow sphere may be linked

together. Thus we may form a chain of alternate

rings and hollow spheres. In an ordinary knot one
end of a cord is passed through a ring formed of the

cord itself and slips away at once in space of four

dimensions.*

A wheel of four-dimensional matter, in two dimen-
sions of the shape of a circle and in the other two di-

mensions very small, would have for axis a flat plate

instead of a rod. This axial plate could extend indefi-

nitely in all the directions of its planet without any
interference with the wheel. The wheel can slip all

around over the axial plate unless held to some position

on it, just as with us a wheel may slip along on its

axis unless held to some position on it. We may sup-

pose that in a three-space we can see the axial plate

and a pair of opposite radii (spokes) of the wheel, ap-

pearing to us entirely separate; in this way we can

see a two-dimensional hole. Or we can see the entire

wheel with a hole through it and an axial rod, cut from
the axial plate by our three-space.

We can fasten the wheel rigidly to the axial plate so

* Some of the writers speak of a loop or " two-dimensional knot " as analo-

gous to an ordinary knot made with a string in our space. This analogy seems

to have been used by Zollner, but there is the objection that the loop is not

two-dimensional if one part of the string passes over the other part, however
closely they may be pressed together. A better analogy would be obtained by
fastening a string at one end to a small object and winding it around this

object. In the plane this would be possible only by carrying the free end of

the string completely around, but we could do it in space of three dimensions

by lifting a part of the string over the object without moving the free end
away from its position.

f Sometimes we shall speak roughly of the plane of the wheel or the plane

of the plate just as we might in our three-dimensional world.
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that it will turn with the wheel, the wheel turning ii>

its plane and the plate turning on itself. We may put

more than one wheel on an axial plate, putting differ-

ent wheels at different points on the plate wherever we
please. If these wheels are all fastened rigidly to the

axial plate we turn them all by turning one. Thus we
have a method of constructing rnachinery in space of

four dimensions.

The axial plate may itself be a wheel. We may
fasten two wheels together at their centers making
them absolutely perpendicular to each other. Such a

figure can revolve in two ways, the plane of one wheel

being the axis plane of the rotation and the plane of

the other wheel the rotation plane.

A wheel may be doubly circular so that a plane ab-

solutely perpendicular to the wheel cuts it in a small

circle just as the plane of the wheel itself cuts it in a

large circle. Such a wheel, then, may turn in two

ways and in either kind of rotation it rotates completely

on itself without passing through any new portions of

its four-dimensional space. (See below, page 38.)

We might have a spherical wheel; something in

three dimensions of the shape of a sphere and its fourth

dimension very small. Such a wheel with a one-dimen-

sional hole through it may turn on an axial rod, but its

motion is not confined to a definite direction of rotation

as is the case with the flat wheel turning in its plane.

For machinery requiring definite rotations we should

use flat wheels with axial plates.* A spherical wheel

* Hinton speaks of the "four-dimensional being's shaft, a disk rotating

around its central plane," and of the spherical wheel, " the four-dimensional

wheel." ("The Fourth Dimension," pages 61 and 71-3.) By associating these

he leaves an impression that the axis of his wheel is his disk, whereas his

wheel has a one-dimensional axis and is not the kind of wheel to be used with

his four-dimensional shafting.
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may be used for vehicles. If four dimensional beings

lived on a four-dimensional earth ; that is, alongside of

its three-dimensional boundary, a vehicle with four or

more wheels of either kind could be used in traveling

over this earth. With a flat wheel he could travel only

in a straight line without friction between the wheel

and the earth; with a spherical wheel he could travel

in any direction in a plane without such friction, but

would meet with a slight friction in turning from one

plane to another.

A vehicle would require at least four wheels to be

in equilibrium, and these must have at least two axes.

Even with flat wheels and axial plates it is necessary

to have at least two of these plates. Anything to re-

main in equilibrium must have at least four points of

support, not all in one plane.

It is difficult to comprehend how the boundaries of

hypersolids, that is, of portions of four-dimensional

space, are three-dimensional. It is evident that analogy

requires this, but it is not easy to understand how each

point within a solid can be all that in its place sepa-

rates the two portions into which the three-space of

the solid divides four-space. At any point in the three-

dimensional boundary of the hypersolid we can start

and go in three mutually perpendicular directions

within this boundary—in as many directions as we
have altogether in our three-dimensional space. We
may have to trace curved paths if the boundary of the

hypersolid is curved, but the paths start out in three

mutually perpendicular directions just as in our space.

We can cut open a hypersolid bounded by polyhe-

drons so as to spread them out in a single three-space.

Reversing this process, we can form the boundary of

a hypersolid by putting together suitable solids in a
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three-space, say in our space, and then turning them
on the faces which join them until th&y are all brought

together. The solids are not distorted in any way nor

separated. Thus if we take a cube, place six equal

cubes on its six faces and one extra cube on one of the

six (see Essay IV, Fig. 4 and context), these* can all

be turned and brought together to form the hypercube

or tesseract which many of the essays describe. We
have the analogy in the case of polyhedrons whose
faces can be cut apart sufficiently to spread them out

in a single plane. The analogy is so very clear that

we may feel sure of the process, although the result is

most puzzling.

We shall mention some of the simpler figures of

four-dimensional geometry corresponding to the figures

studied in our solid geometries.

Among the first to be noticed are the hyperprism

and hypercylinder with parallel line elements, and the

hyperpyramid and hypercone with line elements meet-

ing at a vertex. These all have for bases polyhedrons

or solids of some kind, and the element lines extend

away from the three-space of the base. The hypercube

is a very particular case of the hyperprism.

The simplest case of a hyperpyramid is a figure

called a pentahedroid. It has for base a tetrahedron

or triangular pyramid and thus it has in all five ver-

tices. Any five points, not all in one three-space, may
be regarded as the vertices of a pentahedroid. These

five points, taken four at a time, give us five tetrahe-

drons and the pentahedroid may be taken in five differ-

ent ways as a hyperpyramid. The tetrahedrons are

placed together face to face, each having one face in

common with each of the others. We can cut these

tetrahedrons apart sufficiently to spread them out into
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one three-space. We then have a single tetrahedron

with four others resting on its four faces. The penta-

hedroid is formed by turning these toward one another

until they are brought completely together again. In

this process none of the tetrahedrons is distorted nor

are they in any way separated from one another. When
brought completely together they form a single closed

figure inclosing a portion of hyperspace. This is anal-

ogous to the way in which we can spread out the faces

of a tetrahedron in a single plane, and, reversing the

process, bring them together again and form the tetra-

hedron.

In general, the boundary of a hyperpyramid consists

of the polyhedron base and of lateral pyramids resting

on the faces cf the base. The lateral pyramids are

joined to one another by their lateral faces in the same

way that the faces of the polyhedron base are joined

by the edges.

A hyperpyramid whose base is a pyramid may be

regarded in two ways as a hyperpyramid, the vertex

in either case being the vertex of the pyramid base in

the other case. The two pyramid bases have, then, a

common polygon base and the hyperpyramid may be

considered as determined by a polygon and two points

not both in a three-space with the polygon. The line

joining the two points may be called a line-vertex and

the boundary consists of the two pyramids and a por-

tion which may be generated by a triangle, varying it

may be as to size and shape, with one side fixed, and

with the opposite vertex tracing a polygon which does

not lie in a three-space with the fixed side. The gen-

erating triangle may, then, be called a triangle element.

Similarly, a hypercone with a cone for base may be

regarded in two ways as a hypercone and has for
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boundary the two cones and a portion generated by a

triangle with one side fixed, the opposite vertex tracing

a plane curve which does not lie in a three-space with

the fixed side.

The boundary of a hyperprism consists of the two
polyhedron bases and a set of lateral prisms. The
lateral prisms have for bases the faces of the polyhe-

dron bases of the hyperprism and are joined to one

another by their lateral faces.

A hyperprism with prism bases has for lateral boun-

dary two prisms and a set of parallelopipeds. Such a

figure may be considered in two ways as a hyperprism,

the two lateral prisms in one case being the two bases

in the other case. The four prisms are joined in suc-

cession by their ends and the series of parallelopipeds

are joined, each to the two next to it, by two opposite

faces and to a lateral face of each of the four prisms

by the remaining four faces. If the four prisms are

cut away from the parallelopipeds and cut apart along

one common base they can be spread out in a single

three-space, and if they are right prisms they become

a single right prism. The parallelopipeds may then

be cut apart along one common face and spread out in

like manner, forming when rectangular a single right

prism (parallelopiped). These two long prisms may
be placed together on any pair of faces that were orig-

inally together, one prism placed crosswise to the other,

and then they may be turned from face to face all over

one another. In the original figure they were wound
around each other in such a way that every point in

the lateral surface of one fitted upon a point in the

lateral surface of the other, and they completely in-

closed a portion of four-dimensional space.

If from the four prisms are taken four elements
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that form a parallelogram, the set of parallelopipeds

may be generated by moving this parallelogram paral-

lel to itself, its vertices tracing the ends of the prisms.

The set of four prisms may also be generated by one

of the polygon bases moving parallel to itself, its ver-

tices tracing the parallelograms which join the paral-

lelopipeds to one another. Thus the parallelogram and

the polygon play the part of generating elements, each

with the other for directrix in generating a portion of

the hyperprism.

In a similar way we may have a hypercylinder with

cylinder bases. A part of the lateral boundary consists

of two cylinders joining the ends of the cylinder bases,

and the figure may be taken in two ways as a hyper-

cylinder. Four elements that form a parallelogram

may be taken from the four cylinders and the remain-

ing part of the lateral boundary may be generated by

this parallelogram moving parallel to itself, its vertices

tracing the ends of the cylinders. Since the cylinders

may be generated in a similar manner by a plane curve

moving parallel to itself around any one of the paral-

lelograms, we have a parallelogram and a closed plane

curve, each playing the part of generating element with

the other for directrix in generating one portion of the

hypercylinder.

The hyperprism with prism bases and the hyper-

cylinder with cylinder bases are, then, particular cases

of a class of hypersolids which may be described as fol-

lows : Two polygons, or two closed plane curves, or a

polygon and a plane curve are placed together so that

they intersect but do not lie in a single three-space.

Their planes will intersect only in the point where the

curves intersect. One polygon or curve moves parallel

to itself around the other and generates (with all of its
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interior points) a ring-shaped three-dimensional figure.

The other polygon or curve moves in like manner
around the first, generating a second ring-shaped fig-

ure. These two ring-shaped figures fit completely, and

together form the boundary of a hypersolid, inclosing

a portion of four-space. We may call the hypersolid

a double prism, a prism-cylinder, or a double cylinder

according as we have two polygons, a polygon and a

curve, or two curves. When the planes of two gener-

ating polygons are absolutely perpendicular we have a

right double prism, and so for the others.

If either portion of the boundary is separated from
the other and cut through along one generator it may
be spread out into a single three-space like our space.

When the planes of the two generators are absolutely

perpendicular each portion of the boundary spread out

into a single three-space becomes a right prism or a

right cylinder. ' We may in this case describe these

figures in another way. To form a right double prism,

for example, we take two right prisms with the altitude

of each equal to the perimeter of the other. We can

then bend these around each other, bring them together

completely in all parts of their surfaces, and inclose a

portion of four-dimensional space. In the same way
we can form a right prism-cylinder or a right double

cylinder, taking in one case a prism and a cylinder and

in the other case two cylinders.

When cylinders of revolution are taken in this way
the double cylinder formed may be called a cylinder of

double revolution. This can rotate in .two ways inde-

pendently about two absolutely perpendicular planes,

the planes of the circles formed from the axes of the

two cylinders. In each of these rotations one of the

axis circles rotates on itself and the other, lying in the
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plane which is the axis of the rotation, remains sta-

tionary.

When one of the component cylinders has a very

small radius in comparison with the other, so that the

second has a very small altitude, one cylinder being

like a rope and the other like a wheel,* the hypersolid

is what we have called a doubly circular wheel

(page 31).

One more figure which we have in four-space is the

hypersphere mentioned in one or two of the essays, the

locus of points at a given distance from a fixed point.

Sometimes the term hypersphere is used to denote the

hypersolid, the portion of four-space inclosed by this

locus, which is then called the boundary or hypersur-

face of the hypersphere. The hypersphere (that is the

boundary) is three-dimensional, and in it we have

three-dimensional Elliptic Non-Euclidean Geometry

just as the ordinary spherical geometry is two-dimen-

sional Elliptic Non-Euclidean Geometry.

We will state some of the rules of mensuration for

Geometry of Four Dimensions. In the case of hyper-

solids there are rules for computing the volume of the

boundary or of portions of the boundary, and for com-

puting the hypervolume, that is, the magnitude of that

portion of four-space inclosed. These rules may be

derived for the most part as the corresponding rules for

area and volume are derived in the ordinary geometry,

or they may be obtained by the methods of the Calcu-

lus. They all apply to regular figures and most of

* Here we mean a three-dimensional rope such as we are accustomed to see

in our ordinary space. All the prisms and cylinders which we have just been

discussing are three-dimensional, and go to make up the boundaries of hyper-

solids. On the other hand, the axial plates and rods, as well as the flat wheels

and spherical wheels, spoken of on pages 30-32 are four-dimensional, having

some thickness in all four dimensions.
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them can be extended to certain other classes of figures,

but these cases need not be taken up here.

Hyperprism and hypercylinder

:

Lateral volume == Area of the surface of the base

multiplied by altitude.

Hypervolume= Volume of the base multiplied by
altitude.

Hyperpyramid and hypercone:

Lateral volume = Area of the surface of the base

multiplied by 1/3 of altitude.

Hypervolume = Volume of the base multiplied by

1/4 of altitude.

Double prism, prism-cylinder, and double cylinder:

Volume of one portion of the boundary = Area of

generating polygon or curve multiplied by the

perimeter of the directrix.

The total volume of the boundary is the sum of two
such products. We may say that the total volume is

the sum of the two products formed by multiplying the

areas of the generating polygons or curves, each by the

perimeter of the other polygon or curve.

Hypervolume = Product of the areas of the two
generating polygons or curves.

For the cylinder of double revolution of radii R and

R' we have the formulae,

Volume= 2 «*RR' (R + K)
Hypervolume= 7r*R

2R'2

Hypersphere

:

Volume (of the boundary) = 2it*R3

Hypervolume (inclosed) = >4 x^R*

A cylinder of double revolution circumscribed to a

hypersphere, its radii equal to the radius of the hyper-

sphere, will have double the volume of the hypersphere

and double the hypervolume of the hypersphere.
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IV.

The question of the existence of space of four di-

mensions is one which we cannot escape. It may be

well to remind the reader that this is not a mathemat-
ical question, though the most interesting of all. The
possibility that we are a part of a four-dimensional

space with physical limitations which confine 'us to a

three-dimensional space, and with limitations of our

senses which prevent us from perceiving anything out-

side of this space—this possibility excites the interest

of all who are inclined to abstract speculation. At-

tempts may be made to discover physical proofs of such

a space, to build up theories on its basis that will ex-

plain discoveries of modern Physics as yet but little

understood, or by it to account for various mysterious

phenomena. Most of us are satisfied that no real

proofs of the existence of space of four dimensions will

be found along these lines. Even a workable hypothe-

sis based on the existence of four-dimensional space,

though it might serve temporarily better than any other

hypothesis, would hardly justify a belief in this exist-

ence. But we do say that the existence of space of four

dimensions can never be disproved by showing that it

is absurd or inconsistent ; for such is not the case. Nor,

on the other hand, will the most elaborate development

of the analogies of different kinds ever prove that it

does exist.

The following articles and books treat in a non-

mathematical way of the fourth dimension or other

modern ideas of geometry discussed in this book

:

E. A. Abbott, Flatland ; Little, Brown & Co.

H. A. Bruce, The Riddle of the Fourth Dimension

;

Scientific American Supplement, vol. 66, p. 146.
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T. P. Hall, The Possibility of a Realization of Four-
fold Space; Science, May 13, 1892.

C. H. Hinton, The Fourth Dimension; Harper's
Magazine, July, 1904.

C. H. Hinton, published by Swan, Sonnenschein
&Co.:

Scientific Romances,

A New Era of Thought,

The Fourth Dimension,

An Episode of Flatland.

C. J. Keyser, Mathematical Emancipations; The
Monist, vol. 16, 1906, p. 65.

Simon Newcomb, Modern Mathematical Thought;
Bulletin of the New York Mathematical Society, vol.

3, January, 1894, p. 104.

Simon Newcomb, The Philosophy of Hyperspace;

Bulletin of the American Mathematical Society, second

series, vol. 4, February, 1898, p. 187.

Simon Newcomb, The Fairyland of Geometry;

Harper's Magazine, January, 1902.

"S.," Four-Dimensional Space; Letter to the Editor,

Nature, vol. 31, March 26, 1885, p. 481.

Hermann Schubert, The Fourth Dimension ; The
Monist, vol. 3, April, 1903, p. 402. Reprinted in

Mathematical Essays and Recreations; Open Court

Publishing Company.

J. F. Springer, The Fourth Dimension Simply Ex-

plained; Scientific American, vol. 98, p. 202.

O. Veblen, The Foundations of Geometry; Popular

Science Monthly, vol. 68, p. 21.

A very good treatment of the subject in German is

:

Dr. Carl Cranz, Gemeinverstandliches tiber die soge-

nannte vierte Dimension ; Sammlung von Virchow und

Wattenbach, Hamburg, 1890.





I.

AN ELUCIDATION OF THE: FOURTH
DIMENSION.

The Prize-Winning Essay.

by "essayons" (lieut.-col. graham denby fitch,

corps of engineers, u. s. a.)

It is impossible to form a mental picture of the

fourth dimension. Nevertheless, it is not an absurd-

ity, but a useful mathematical concept with a well-

developed geometry involving no contradictions. To
gain a partial and symbolic idea of its meaning, re-

sort must be had to analogy with dimensions of a

lower order.

An aggregate is said to be one, two, or three-dimen-

sional according as one, two, or three numbers are

necessary to determine any one of its elements. Con-
sidering space as an aggregate of points, a line is a

one-dimensional space, because to determine the posi-

tion of any point on it one number, giving its distance

from some fixed point, suffices. Similarly, a plane is

a two-dimensional space, and the point aggregate of

ordinary space is three-dimensional. Thus, the exact

position of any point of the earth is known when its

latitude, longitude, and elevation above sea level are

given. Now, if we have four variable, related quanti-

ties, each capable of assuming, independently of the

others, every possible numerical value, we obtain a

four-dimensional aggregate. Such an aggregate, if of

points, constitutes four-dimensional space.
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If we connect all points of our space (a 3-space)

with an assumed point outside of it, then the" aggre-

gate of all the points of the connecting lines consti-

tutes a 4-space (hyperspace). Again, just as a point

moving generates a line, just as a line moving out-

side itself generates a surface, and a surface moving
outside itself generates a solid ; so a solid moving out-

side of our space generates a hypersolid, or portion

of hyperspace. Or hyperspace itself may be conceived

as generated by our entire space moving parallel to

itself in a direction not contained in itself, just as our

space may be generated by the similar motion of an

unlimited plane, which may itself be generated by an

unlimited right line. Any space is that which forms

the boundary between two portions of a higher space,

and just as every unlimited plane divides our space

into two equal infinite parts, so every 3-space divides

hyperspace into two equal infinite regions between

which that 3-space forms a boundary of an infinitely

small thickness in the fourth dimension.

Two plane figures (say triangles) if in the same
plane may partially coalesce, but cannot intersect un-

less in different planes; similarly two volumes (say

cubes) if in the same 3-space may partially coalesce

but cannot intersect unless in different 3-spaces. In

hyperspace we have the following possible intersec-

tions : A hypersolid and a 3-space intersect in a solid,

two 3-spaces in a plane, three 3-spaces in a right line,

four 3-spaces in a point, a 3-space and a plane in a

right line, a 3-space and a right line in a point, and

two planes in a point. If the intersections are at an

infinite distance the intersecting elements are said to

be parallel, and if two 3-spaces are parallel all figures

or volumes in one 3-space are at equal distances from
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the other 3-space. In the case of planes there are two
kinds of parallelism, and parallel planes are either

completely or incompletely parallel according as they

are in the same or different 3-spaces, or as their inter-

section at infinity is a right line or a point.

To a given right line at a given point one can erect

in a plane but one perpendicular, while in a 3-space

one can erect an infinite number of perpendiculars,

forming together a perpendicular plane, and in hyper-

space an infinite number of perpendicular planes form-

ing together a 3-space perpendicular to the given

right line. A 3-space can also be perpendicular to a

plane or to another 3-space. Planes may be perpen-

dicular in two ways, incompletely or completely per-

pendicular, according as they are in the same 3-space

or not; in the latter case every right line of either

plane is perpendicular to every right line of the other.

The position of a point in a plane may be de-

termined by its distance from each of 2 perpendicular

right lines; in our space, by its distance from each of

3 mutually perpendicular planes; and in hyperspace,

by its distance from each of 4 mutually perpendicular

3-spaces. In hyperspace these distances are accord-

ingly measured along 4 mutually perpendicular right

lines, which, taken by twos, determine 6 mutually per-

pendicular planes ; and, taken by threes, determine the

above-mentioned 4 mutually perpendicular 3-spaces.

Just as in our space it requires at least 3 points to de-

termine a plane, so in hyperspace it requires at least 4
points to determine a 3-space. A 3-space may also be

determined by 2 non-intersecting right lines or by a

plane and one point not in it.

Just as portions of our space are bounded by sur-

faces, plane or curved, so portions of hyperspace are
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bounded by hypersurfaces (three-dimensional), i. e.,

flat or curved 3-spaces. Hyperspace contains not only

an infinite number of flat 3-spaces like ours but also

an infinite number of curved 3-spaces or hypersurfaces

of different types. A hypersphere, for instance, is a

closed hypersurface all the points of which are equally

distant from its center. Five points not in the same

3-space determine it, just as 4 points not in the same
plane determine a sphere, and 3 points not in the

same straight line a circle. All of its plane intersec-

tions are circles, all of its space intersections are

spheres. A hypersphere of radius R passing through

our space would appear as a sphere with a radius

gradually increasing from zero to R and then grad-

ually decreasing from R to zero.

While in our space there are but 5 regular poly-

hedrons (solids bounded by equal regular polygons),

namely, the tetrahedron, cube, octahedron, dodeca-

hedron, and icosahedron; in hyperspace there are 6

regular hyper-solids (cells), bounded by equal regular

polyhedrons. These are C5 (bounded by 5 tetrahe-

drons), C 8 (by 8 cubes), C1Q (by 16 tetrahedrons), C24

(by 24 octahedrons), C12 o (by 120 dodecahedrons),

and Cqoo (by 600 tetrahedrons) . All of them have been

exhaustively studied by mathematicians, and models of

their projections on our space have been constructed.

Of these, C8 (or the hyper-cube) is the simplest, be-

cause, though with more bounding solids than C5 , it is

right-angled throughout, and therefore the standard

form for measuring hyperspace. It is generated by a

cube moving in the direction perpendicular to our space

for a distance equal to one of its sides. In Fig. 1

where all dotted lines are supposed to be in hyperspace

the initial cube is symbolically represented by A B C D
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E F G H and the final cube by A' B' C D' E' F' G'

H' , the direction AA' being supposed perpendicular

to our space. Projecting* the edges of a hypercube on

our space we get a network model of which Fig. 2 is a

plane projection. The eight bounding cubes are repre-

sented in the model by the following projections : ( 1,

2, 3, 4, 5, 6, 7, 8), (5, 6, 7, 8, 9, 10, 11, 12), (9, 10,

11, 12, 13, 14, 15, 16), (13, 14, 15, 16, i, 2, 3, 4), (1,

5, 9, 13, 2, 6, 10, 14), (2, 6, 10, 14, 3, 7, 11, 15), (3, 7,

11, 15, 4, 8, 12, 16), (4, 8, 12, 16, 5, 9, 13, 1). The
form of the hypercube is conditioned by the mutual

relations of these cubes that form its boundaries merely,

as it contains an infinite number of cubes, just as a

cube contains an infinite number of squares. In gen-

erating a hypercube by the motion of a cube, the

latter's corners generate edges, its edges generate faces

(squares) and its faces generate cubes. The resulting

number of elements of the hypercube are therefore

:

In Initial In Final In Hy-
Cube. Generated. Cube, percube.

Corners 8 .

.

8 16

Edges 12 8 12 32

Faces (squares) .6 12 6 24
Cubes 1 6 1 8

Each corner is common to 4 mutually perpendicular

edges, to 6 faces and to 4 cubes ; each edge is common
to 3 faces and 3 cubes; and each face is common to

2 cubes. Every cube therefore has one face in com-

mon with 6 of the 7 others. We must conceive of

the hypercube as composed of cubes starting from

squares parallel to the faces of the cube and of these

cubes all that exist in our space are the parallel squares

from which they start.

*Not perpendicularly but as from a point at a little distance.- H..P. M.
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In a plane the only kind of rotation possible is that

about a point, in 3-space rotation can take place about

an axis line, and in hyperspace about an axis plane.
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Two symmetrical pJane figures such as the triangles

A and B (Fig. 3) cannot be made to coincide by any

movements in their plane, but by rotating one of them

180 deg. in the third dimension, it can be made to
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coincide with the other. Similarly, two symmet-
rical volumes (with faces equal but in reverse order)

such as the hollow pyramids C and D (Fig. 4)
cannot be made to coincide by any movements in our

space, but by rotating one of them 180 deg. in hyper-

space this can be done. The rotating pyramid disap-

pears from our space, and upon its return after rotating

180 deg. it can be slipped into the other. In our space

two movements of rotation will combine into a single

resultant rotation, similar to . its component rotations

except that the direction of the axis is different. In

hyperspace, however, there is in general no resultant

for two rotations. Hence there are two different types

of rotation in hyperspace and a body subject to two

rotations is in a totally different condition from that

which it is in when subject to one only. When subject

to one rotation a whole plane of the body is stationary.

When subject to the double rotation no part of the

body is stationary except the point containing the two
planes of rotation; and if the two rotations are equal,

every point in the body, except that one, describes a

circle.

Freedom of movement is greater in hyperspace than

in our space. The degrees of freedom of a rigid body

in our space are 6, namely, 3 translations along and 3

rotations about 3 axes, while the fixing of 3 of its

points can prevent all movement. In hyperspace, how-

ever, with 3 of its points fixed it could still rotate about

the plane passing through those points. A rigid body

has 10 possible different movements in hyperspace,

namely, 4 translations along 4 axes, and 6 rotations

about 6 planes, while at least 4 of its points must be

fixed to prevent all movement.

In hyperspace, a sphere if flexible could without
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stretching or tearing be turned inside out. Two rings

of a chain could be separated without breakage. Our
knots would be useless. Thus the knot shown in Fig.

5 could be unknotted ' without removing the fastened

ends. Just as in our space a point can pass in and

out of a circle without touching its circumference, so

in hyperspace a body could pass in and out of a sphere

(or other inclosed space) without going through the

surface surrounding it. In short, all of our space in-

cluding the interior of the densest solids is open to in-

spection and manipulation from the fourth dimension,

which extends in an unimaginable direction from every

point of space.

Has hyperspace a real physical existence ? If so, our

universe must have a small thickness in the fourth di-

mension, otherwise like the geometrical plane assumed

to be without thickness, our world too would be a mere

abstraction (as indeed some idealistic philosophers

have maintained), that is, nothing but "a shadow cast

by a more real four-dimensional world." The real

existence of a slight extension in the fourth dimension

would, moreover, simplify certain scientific theories.

For instance, in our space 4 is the greatest number of

points whose mutual^ distances, 6 in number, are all

independent of each other; but in hyperspace the 10

distances between any 2 of 5 points are geometrically

independent. If this greater freedom of position were

permissible to atoms, it would help to explain such

chemical phenomena as isomerism, where molecules of

identical composition have different properties. Again,

rotation in hyperspace would explain the change of a

body producing a right-handed into one producing a

left-handed polarization of light. Further, Prof.

McKendrick said before the British Association : "It
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is conceivable that life may be the transmission to dead

matter ... of a form of motion sui generis/' Hyper-

space has been brought somewhat into disrepute because

spiritualists have assumed its existence in order to give

"a local habitation" to their vagaries. Nevertheless,

the possibility of its existence has not yet been shown to

be inconsistent with any scientific fact, and the limita-

tion of space to three dimensions, though probably cor-

rect, is therefore purely empirical.

Of what use then is the conception of hyperspace?

For one thing, it gives a deeper insight into geometry.

Thus, a circle considered merely as a one-dimensional

aggregate of points has very few properties, while in a

plane it has a center, radii, tangents, etc., and in 3-space

has further numerous geometrical relations with the

sphere, cone, etc. Similarly, the properties of any given

line or surface increase in number when investigated

in hyperspace. Also, just as it requires a 3-space to

include certain one-dimensional aggregates (the helix,

for instance), so in hyperspace hitherto unknown lines

and surfaces become mathematically possible. Lower
spaces are contained in higher (if curved, not neces-

sarily the next higher) ; and just as the comprehension

of plane geometry is enlarged by viewing plane figures

in 3-space, so solid geometry is much illuminated by the

geometry of hyperspace. Fields of mathematics hither-

to inaccessible to geometry are now elucidated by

geometrical representations. Finally, this conception

effects a complete divorce between geometric space and

real space, no longer considered necessarily identical,

and in other ways also enlarges our mental horizon.
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II.

NON-EUCLIDEAN GEOMETRY OF THE
FOURTH DIMENSION.*

BY LIEUT.-COL. GRAHAM DENBY FITCH,

CORPS OF ENGINEERS, U. S. A.

The Fourth Dimension is an offshoot of the so-called

"non-Euclidean" geometry, which has thrown so much
light on the foundations of mathematics and on the

nature of space.

For over 2,000 years Euclid was considered unassail-

able. His axioms were regarded as indisputable laws

of real space, and his theorems as rigidly logical deduc-

tions therefrom. Neither view is correct. His axioms

are metaphysical assumptions, and his theorems do not

follow from them alone. The foundation of his method
consists in establishing by superposition the congruence

of lines, angles, plane figures, etc., and proof with him
is thus merely a matter of constructive intuition. The
axiom of "free mobility

7
' (i. e., the possibility of mov-

ing figures in space without change of size or shape),

which for instance does not hold on an egg-shaped sur-

face but is essential to any system of geometrical meas-

urement, is assumed by Euclid without being stated.

(Hilbert discards proof by superposition, for motion

itself needs a geometric foundation, and so cannot be a

foundation for geometry.) Another of Euclid's tacit

assumptions is that the straight line can be infinitely

extended, which, true of Euclidean, is false of some
non-Euclidean geometries (e. g. Riemann's).

* This supplementary essay was written by the winner of the prize after

the award was made. It is here published as a historical resume of the subject.



SIMPLY EXPLAINED 53

Euclid proves that "if alternate angles are equal,

then the lines are parallel," but of the converse propo-

sitions,

"If alternate angles are unequal, the lines meet."

"If the lines are parallel, alternate angles are equal"

(either of which implies the other) he could prove

neither, and hence assumed the first, his celebrated fifth

postulate, without which he could not proceed, as it

was needed to prove the early important theorem that

the sum of the angles of a triangle is not less than two
right angles. This postulate of parallels appeared to

later mathematicians neither self-evident nor indepen-

dent of the other axioms. Considered a flaw, fruitless

efforts were made for centuries to prove it. Yet here

Euclid is right; this axiom or some equivalent (e. g.

two intersecting lines cannot both be parallel to the

same line) is necessary to Euclidean geometry.

It was from endeavors to improve upon Euclid's

theory of parallels that non-Euclidean geometry arose.

If the fifth postulate is really involved in Euclid's other

assumptions, its denial must lead to contradictions ; but

about 1830 the Russian Lobachevsky and the Hun-
garian Bolyai, independently of each other, showed that

its denial led to a system of two-dimensional geometry

as self^consistent as Euclid's. This new geometry is

based on the assumption that through a given point

a number of straight lines can be drawn parallel to a

given straight line.

Euclid's proof that the sum of the three angles of a

triangle is not greater than two right angles was still

considered perfect until the German mathematician

Riemann in 1854 showed that it must involve a fal-

lacy, because no premises were used not as true of

spherical as of plane triangles, yet the conclusion is
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false of spherical triangles. On this basis Riemann
further showed that still another self-consistent geom-

etry of two dimensions can be constructed, based on the

assumption that through a given point no straight line

can be drawn parallel to a given straight line.

Thus we have three self-consistent geometries of

two dimensions, inconsistent as a rule, however, with

one another.

Let P C (Fig. i) rotate counter-clockwise about P.

Three different results are logically possible. When
the rotating line ceases to intersect the fixed line on the

right, either it will immediately intersect it on the left,

Fig. i. Fig. 2.

or it will continue to rotate for a time before intersec-

tion on the left occurs, or, lastly, it will intersect the

fixed line on both sides for a period of time. The first

possibility gives Euclid's, the second Lobachevsky's,

and the third Riemann's geometry.

The straight line of one geometry is not the same as

the straight line of another, but in all three geometries,

it is the shortest distance between two points. Such

straightest lines are known as geodetic lines. Inciden-

tally it may be mentioned that the ordinary straight line

could not be drawn until recently except by means of a

straight edge. This of course was equivalent to assum-

ing it. A method of constructing it was not discovered
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-until 1864, when a Frenchman, M. Peaucellier, first

solved the problem, by means of a mechanism of seven

links. This consists (Fig. 2) of two long links of equal

length pivoted at the fixed point A, with their other

ends pivoted to the opposite angles of a rhombus of

four equal shorter links pivoted together, and of a final

link pivoted to one free end C of the rhombus and to a

fixed point B, the distance AB being equal to the link

BC. If now C be made to describe a circular arc about

B, P will describe a straight line perpendicular to AB,
as can be readily proved by elementary geometry.

Defining space as "any unbounded continuum of geo-

metric entities," the two non-Euclidean geometries,

though logically on a par with the Euclidean, were con-

sidered inconsistent with reality until a space was
known for which they held true. It was found, how-
ever, that Riemann's geometry is none other than that

of a spherical surface (a two-dimensional space of con-

stant positive curvature) provided arcs of great circles

be taken as geodetic (straightest) lines. In 1868 the

Italian Beltrami discovered a surface for which Loba-

chevsky's geometry held true, the so-called pseudo-

spherical surface of infinite extent (a two-dimensional

space of constant negative curvature). In our space

only limited strips of the pseudo-sphere can be connect-

edly represented. It is a saddle-shaped surface (like

the inner surface of a solid ring) ; and as the principal

curvatures have their concavities turned in opposite

ways, the curvature is negative. Euclid's geometry

being true for the plane (a two-dimensional space of

zero curvature), it will be seen that all three geome-

tries require a space of constant curvature. On a

pseudo-sphere the straightest line has two separate

points at infinity, in a plane one, and on a sphere none.



56 THE FOURTH DIMENSION'

Euclid's axiom that two straight lines—or more gen-

erally two geodetic lines—include no space, does not

hold for geometry on the sphere. Euclid's fifth postu-

late, that two straight—i. e. geodetic—lines intersect

when the sum of the interior angles is less than two
right angles, does not hold for geometry on the pseudo-

sphere. It can now be seen that Euclid's fifth postulate

does not require nor admit of proof, because it embodies

the definition of the kind of space to be dealt with (that

of ordinary geometry).

Riemann also showed that there are logically three

kinds of space of three dimensions, with properties

analogous to the two-dimensional spaces mentioned.

They are distinguished by a so-called measure of space

curvature (purely analytical, not denoting curvature

for sense perception) . If this constant is zero, we have

Euclidean space ; if positive, we have spherical space

;

and if negative, we have pseudo-spherical space. In

spherical space, straightest lines return upon them-

selves, and the back of our own head would be the ulti-

mate background. Space would be unlimited but not

infinitely great, and the sum of the angles of a triangle

would exceed two right angles by an amount propor-

tional to the area. In pseudo-spherical space straight-

est lines run to infinity as in Euclidean space, but the

sum of the angles of a triangle is less than two right

angles by an amount proportional to the area. In both

spherical and pseudo-spherical space there are no sim-

ilar figures of unequal size, for in each case the greater

triangle must have different angles.

Lie proved that free motion can occur only in the

above three spaces. There are other forms of non-

Euclidean space which do not allow of free motion,

called by Killing the ClifTord-Klein spaces.
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With three different self-consistent geometries of

co-ordinate rank for the investigation of the properties

of three-dimensional aggregates of points, it was nat-

ural to regard a space of any type as a locus in space of

a higher dimension, and this led to the consideration of

space of four dimensions, the properties of which, when
of zero curvature, have been discussed in the main
essay.

Euclidean space considered as a region of measure-

able quantities does not, as we have seen, correspond

with the most general conception of an aggregate of

three dimensions, but involves also special conditions-

It is specially characterized by: i, free mobility of

rigid figures ; 2, the single geodetic line between two

points; 3, the existence of parallels; or by 1, free mo-
bility ; 2, postulate of similarity. Now these character-

istics are not necessities of thought, and if they hold of

real physical space, the fact must be determined by

experience as in other empirical investigations, that is,

by observation and experiment, for we cannot logically

demand that the objective world must conform with

our subjective intuitions.

It can never be proven, however, that our space is

accurately Euclidean, for unavoidable errors of obser-

vation must always leave a slight margin in our meas-

urements ; and though within those limits our space is

apparently Euclidean, this proves merely that the space

constant is small, but not that it is zero. In spherical

and pseudo-spherical triangles, the greater the area of

the triangle the greater the difference of its angle sum
from two right angles. But as even the interstellar

triangles of parallax investigations are utterly insignifi-

cant compared with the dimensions of space itself, it

must always remain an open question whether, if we
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had triangles large enough, the sum of the angles would
still be two right angles. Even with our imperfect

measurements, real space, however, might conceivably

be proven to be Lobachevsky's (or Riemann's) ; for

instance, if angular measurement could be made accu-

rate to one millionth of a second, and if a lack (or ex-

cess) of two millionths were then found in the angle

sum of some interstellar triangle.

Real physical space cannot be said to be either Eu-

clidean or non-Euclidean. Geometry therefore throws

no light on the nature of real space. The study of real

space is an empirical science, while geometry is a con-

struction of pure thought, a' branch of pure mathe-

matics. Pure mathematics is a collection of hypothet-

ical, deductive theories, each .consisting of a definite

system of primitive, undefined, concepts or symbols and

primitive, unproved, but self-consistent assumptions

(commonly called axioms) together with their logically

deducible consequences following by rigidly deductive

processes without appeal to intuition. Pure mathemat-

ics thus reveals itself as nothing but symbolic or formal

logic. It is concerned with implications, not applica-

tions. On the other hand, natural science, which is em-

pirical and ultimately dependent upon observation and

experiment, and therefore incapable of absolute exact-

ness, cannot become strictly mathematical. The cer-

tainty of geometry is thus merely the certainty with

which conclusions follow from non-contradictory prem-

ises. As to whether these conclusions are true of the

material world or not, pure mathematics is indifferent.

As applied, geometry, in. short, is not certain, but useful.

The fact that all pure mathematics, including geom-

etry, is rigidly deductive, is in fact nothing but formal

logic, has important philosophical bearings. It defi-
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nitely and finally refutes Kant, who based his entire

philosophy on the supposed possibility of forming

"synthetic judgments a priori"; that is, of obtaining

absolute truth by the intuitions of pure reason quite

independently of experience. For proof of his stand-

point he referred to the existence of geometry. This

argument was irrefutable until the discovery of non-

Euclidean geometry. Another far-reaching conclusion

is the following: Metaphysical axioms being mere

imitations of geometrical axioms will, like the latter,

have to be discarded. It seems therefore fitting to con-

clude with the following words of the eminent German
mathematician Hilbert: "The most suggestive and

notable achievement of the last century is the discovery

t

of non-Euclidean geometry."
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III.

FOURTH DIMENSION ABSURDITIES.*

BY "iNCREDULUS ODl" ( EDWARD H. CUTLER, A.M.,

NEWTON, MASS.)

The fourth dimension has no real existence in the

sense in which the external world that we know by

* First Honorably Mentioned Essay.—This author is attacking arguments
offered in proof of the existence of a space of four dimensions. Writers en-

thusiastic on the subject have given us details of the four-dimensional geom-
etry and have tried to explain certain real or alleged phenomena by theories

based on this geometry. But the possibility of constructing a consistent sys-

tem does not prove its existence and we may very well say in answer to these

writers that no experience has justified a belief in such existence and that no
well-authenticated facts are explained by these theories any more satisfacto-

rily than by other theories. Some details, however, have been slightly mis-

understood by the author, or by the four-dimensional writers whom he is

answering, and his essay ought not to go out as an explanation of the fourth

dimension without a correction of his statements on these points.

He refers first to analogies drawn from the suppositions of a space of one
dimension and a space of two dimensions and our relation to the inhabitants

of such spaces. The analogies derived from line and plane geometries and
the relation of geometry of three dimensions to these geometries are very

useful in helping us form a conception of the four-dimensional geometry.

We may even apply these processes to physical conceptions and think of two-

dimensional and four-dimensional matter with a two-dimensional and a four-

vlimensional physics. Thus two-dimensional matter in a two-dimensional

space might be impenetrable, one portion furnishing obstruction to the move-
ments of another portion. While these suppositions may "furnish no basis

for belief in a fourth dimension," we should not say that they " involve a fatal

confusion of mathematical with physical conceptions." The question of the

existence or non-existence of such matter is a question of experimental physics
rather than a question of possible physical conceptions.

In speaking of lines, squares, and cubes and their boundaries, and of the

analogy by which we derive a conception of magnitudes in space of four dimen-
sions bounded by solids, he says that there is no such analogy ; for "the only

possible boundary of a solid is a surface, whatever be the number of the di-

mensions of space." Apparently, he supposes that the magnitudes which are

bounded by solids are themselves solids, whereas they are portions of the

space of four dimensions. I*ines are one-dimensional, surfaces are two-

dimensional, and solids are three-dimensional whatever the number of
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means of our senses has real existence. It is a philo-

sophical and metaphysical conception, whose actual

existence cannot be demonstrated by observation or

by logical reasoning. The existence of the fourth

dimension is regarded by some as in a high degree

probable, and as furnishing a basis for metaphysical in-

vestigation, and a means of explaining some physical

phenomena, the occurrence of which, however, is not

universally admitted. It may also, like any supposition,

true or false, be made the hypothesis for mathematical

speculations, which are comprehensible, however, by

the very small and select number only who are endowed

dimensions of space. This certainly gives us a "regular progression," lead-

ing, however, to something which is not a solid anymore than a solid is a

surface. We can think and reason about these figures although we may not

be able to form any picture of them in our imagination.

Some writers have stated that a right glove turned into a left glove by
rotation in space of four dimensions is turned inside out. This is not true

and, of course, it cannot be explained, but the change from right to left pro-

duced by a simple rotation is easily explained, and indeed it is exactly analo-

gous to the case of symmetrical triangles in a plane. This matter is discussed

quite fully in the Introduction (p 28 .

If the space of our perceptions did lie within a space of four dimensions,

then there would be a " new direction, not connected with any of those which
we know, but at right angles to them all." Each direction which we know is

at right angles to other directions which we know, but it does not follow that

the new direction must coincide with them all or with any of them. We may
" not need to be convinced that there is no such direction," but there is no
confusion of thought in describing this direction.

Nor does the expression "entering the fourth dimension" seem to be

''manifestly unintelligible, " even if some slightly different phrase were bet-

ter. If there were a " new direction " which we could not perceive, then our

perceptions would not be unrestricted in direction. A body moving off in this

direction would indeed " retain its length, breadth, and thickness," but would
not remain within the range of our perceptions.

There is no question of the possibility in space of four dimensions of enter-

ing or passing out of what we call a tightly shut box cr room, or of removing
the contents of an egg without disturbing the shell (see foot-note p. 23).

It is in this new direction that the walls of the room and the shell of the egg
are supposed not to extend, and if such a direction did exist these movements
would be possible without any modification of physical laws.

The space of our sensations and perceptions is only three-dimensional, but

there is nowhere any contradiction in the Geometry of Four Dimensions, nor

anything that is impossible —II. P. M.
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by nature with the ability to cope with original investi-

gation in the domain of the higher mathematics.

The word "dimension" is more readily explained

than defined. All more or less clearly conceive of space

as extending indefinitely or infinitely in every direction

;

and of extension in space there are three "dimensions"

—length, breadth, and thickness. Or, in another point

of view, having three fixed points from which to reckon

measurement, by three dimensions or measurements we
can fix exactly the position of any point in space. Thus,

if the three fixed points be the center of the earth, one

of the poles, and some other point on the surface, as

the location of the Royal Astronomical Observatory at

Greenwich, the length of the line drawn from the center

of the earth to the point in question in space, as a star,

however remote, and the latitude and longitude of the

point in which the line from the center intersects

the surface, will be three dimensions, which fix exactly

the position of the point in space, or of the star. Or
again, starting from any point in space, we may reach

any other point by proceeding successively in three

directions at right angles with one another. Thus, mov-
ing from the starting point, first the proper distance

east or west, then from the point arrived at the proper

distance north or south, and finally the proper distance

up or down, we reach the second point in question.

In all the ways in which the meaning of the word is

thus illustrated we see that we can have no fewer and

no more than three dimensions; but the believers in a

fourth dimension infer its existence from analogy in

one of the following deductive processes

:

(i) Conceive, we 'are bidden, of a space of but one

dimension. A being in such a space would be limited

to a straight line, which he would conceive as extending
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infinitely in both directions. His only possible move-
ment would be along this line, and if he encountered

another being, neither could pass the other. If he is

really within a space like ours, although his perception

is confined to one direction only, and a being in our space

should lift one of the two beings, and place him on the

other side of the first, the latter would lose sight of

the other as soon as the lifting took place, and the

movement by which the change of position had been

effected would be utterly unintelligible to him.

Conceive of a space of but two dimensions, like the

flat surface of a table. Beings in such a space could

move around one another, but one of them completely

surrounded by others would be imprisoned by them. If,

as before, the two-dimension space is within our space,

and really depends on the limitation of the perceptive

faculties of the beings in question, the imprisoned being

could be lifted by a being in our space, and set down
outside of the beings surrounding him. The latter

would lose sight of him during this movement, and not

understand how it had been effected.

From these suppositions of one-dimension space and

two-dimension space, the inference is drawn that there

may be a fourth dimension in our space, and that our

ignorance of it arises only from the limitation of our

perceptive faculties.

These suppositions, however, involve a fatal confu-

sion of mathematical with physical conceptions. Mathe-

matical lines and plane figures do not, like matter,

occupy space, and they present no obstruction to the

movements of one another. They may freely intersect,

or pass through one another, or coincide wholly or in

part with one another. If these supposititious beings

in one- or two-dimensional space find any obstruction to
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their movements, it must be because they occupy space,

and therefore are really in three-dimension space, how-

ever little they extend except in one or two directions.

A line or a plane surface can be conceived only with

space around it in every direction. The supposition of

a one-dimension or a two-dimension space is therefore

impossible except as a mathematical abstraction, and

furnishes no basis for belief in a fourth dimension.

r (2) Tne straight line, a one-dimension magnitude,

ends in points ; the square, a two-dimension magnitude,

is bounded by straight lines, one-dimension magni-

tudes ; the cube, a three-dimension magnitude, is

bounded by squares, two-dimension magnitudes. It is

inferred by analogy that three-dimension magnitudes

bound four-dimension magnitudes, although the latter

are not known to us. Thus the "four-dimensional

cube" receives a name, the "tesseract," and is said to

be bounded by cubes.

^ But there is no such analogy as is here assumed. All

lines end in points, although some lines, like circular

arcs, require two-dimensional space, and others, like a

corkscrew curve, three-dimensional. Nor are all two-

dimensional figures bounded by straight lines. The
bounding lines of circles and ellipses, for example,

require two-dimensional space, as much as the figures

themselves. Still further, solids like spheres or egg-

shaped bodies, are bounded by three-dimension sur-

faces. There is, therefore, no regular progression

which would lead us to suppose the existence of magni-

tudes bounded by solids. In fact such a supposition

is inconceivable. The only possible boundary of a

solid is a surface, whatever be the number of the dimen-

sions of space.

(3) In the series of the successive powers of a
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number, a, a
2
, a

3
, a

4
. . . an, a may be represented

graphically by a straight line, of which a denotes the

length ; a
2
, by a square, of which a denotes the length

of a side ; a
3
, by a cube, of which a denotes the length

of an edge. It is inferred that if we keep on, there

must be a magnitude corresponding with a
4
, and so

on indefinitely up to an . Such magnitudes are incom-

patible with three-dimension space, and suggest for

their possible existence "spaces of higher order."

To those who have some elementary knowledge of

analytical geometry, or even of the use of graphs in

algebra, the origin of the conception of spaces of

higher order may be presented in a different way. As
an equation containing two "variables" may be con-

sidered as representing the locus of a series of points

in a plane, so an equation with three variables is the

locus of points in space, referred to three rectangular

axes. But since, as shown above, in explaining the

word "dimension," three dimensions or co-ordinates

fix definitely and exactly the position of a point, equa-

tions with more than three variables transcend the

scope of our geometry, and require for analogous in-

terpretation spaces of .more than three dimensions.

There is no objection to the hypothesis of spaces

of a "higher order" as a purely mathematical concep-

tion; but this abstract supposition has no bearing on

the number of dimensions of actual space as we know it.

(4) If we connect by a straight line the vertex of

an isosceles triangle with the middle point of the base,

we have divided the triangle into two triangles which

are plainly equal. If we were confined to the two-di-

mensional surface of which the triangles are a portion,

we could never move them about so as to apply one to

the other, and prove them equal by coincidence. Not
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being under this restriction, but being in three-dimen-

sion space, we turn one of the triangles a half revolu-

tion on one of its sides, and then the two figures may be

made to coincide. Now there are many symmetrical

solids, for instance, the two hands, which can never

be brought into identical shape. We cannot prove the

left hand equal to the right by putting on the left the

right-hand glove. But if we turn the right-hand glove

inside out it will fit the left hand. Just as we can prove

two-dimensional figures equal by availing ourselves of

the possibilities presented by three-dimensional space,

it is inferred that in four-dimensional space, not only

the glove, but the hand within it, might be turned inside

out, and made identical in shape with the other hand.

No explanation is offered of the way in which an

additional dimension would render such an eversion

possible, and if we could admit that it would do this,

we are not shown why the actual existence of a fourth

dimension follows. Some four-dimension enthusiasts

appear to believe that symmetrical forms in organic

bodies could not originate without a fourth dimension,

but no reason is given for this belief.

The four numbered sections above include virtually

all the lines of thought along which the effort is made
to substantiate the existence of a fourth dimension.

Metaphysical considerations are sometimes added of

the uncertainty and possible inaccuracy of our concep-

tion of space, but with no suggestion for correcting

this inaccuracy, and no argument for the belief in a

fourth dimension. Admit that the mind must itself

contribute an a priori element to all knowledge, and

that the truth of things is not limited by the phe-

nomenal apprehension of them ; it does not follow that

this apprehension is to be assumed without demonstra-
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tion to be false or incomplete. In an investigation like

the present one it is unnecessary to consider whether

our conception of the non ego is subjective or objective

;

we must accept the world of matter and of mind in

which we live as our perceptions present it to us, and

as it is generally conceived. No observation has ever

discovered the existence of a fourth dimension in space,

and it may safely be said that there is no reason for

believing in its existence.

The theory of spaces of a higher order, as developed

in section (3) above, is entirely legitimate as an ab-

stract mathematical conception, but furnishes no basis

for the supposition of a fourth dimension in our space.

It virtually assumes space as we know it to be three-

dimensional; yet from a suggestion arising from this

theory apparently (for no other origin for the assump-

tion is to be found) the four-dimensionists have made
space as we know it a space of the highest order; for

the same analogies and inferences on which they depend

would lead us to a fifth, a sixth, an nth. dimension. A
fourth dimension belongs (or rather four dimensions

belong) to the theoretical four-dimension space; but

mathematics furnishes no basis for ascribing to our

space more or fewer than three dimensions.

The confusion of thought of the four-dimensionists

characterizes their writings on the subject. The most

thorough-going devotee of the fourth dimension as-

serts : "There is nothing mysterious at all about it.

. . . From every particle of matter there is a new
direction, not connected with any of those which we
know, but independent of all the paths we can draw

in space, and at right angles to them all." It would

seem indisputable that a direction at right angles with

all the paths or lines that we can draw in space from
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any point, would produce lines coinciding with all the

lines drawn from the point, and therefoie giving no
"new direction." But we do not need to be convinced

that there is no "direction" from which we are cut

off, and in which we cannot direct our perceptions.

The attempted analogies described in section (i)

above, are those on which the four-dimensionists chiefly

depend, and they rely upon them to show that a fourth

dimension would explain how a body may become
invisible. They assert that a body would disappear on

"entering the fourth dimension." This expression is

manifestly unintelligible. Every body extends con-

stantly in all the dimensions of space ; we cannot think

of it as "entering the dimension" of length, breadth,

or thickness, or of "entering the fourth dimension,"

if there were one. But the disappearances produced as

in section (i) depend wholly on removal from the

limited perceptive faculties of the supposed observers;

but our normal perceptions are unrestricted in direction,

and extend to every point in space, unless cut off by

distance or by an interposed physical obstruction. If

all the particles of a body moved in the "new direction"

of the imaginary fourth dimension, the body would still

retain its length, breadth, and thickness, and would still

remain within the range of our perceptions.

The assertion is made on the authority of eminent

mathematicians, that in space of four dimensions there

would be no obstruction to entering or emerging from

space shut in on every side, as a tightly shut box or

room, and "the fourth dimension" is relied upon to

explain supposed mysterious occurrences of such en-

trance or emergence. The modification of physical

laws in spaces of a higher order, those of unusual

mathematical ability alone can be expected to under-
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stand, and in the special instance in question no expla-

nation is vouchsafed. Until such explanation is

given, those who can make no - claims to excep-

tional mathematical talent will be unable to believe it

possible, in space of the fourth, or of any order, to

extract the contents of an egg, or to pass an object

within the egg, and at the same time leave intact the

continuous material structure that we call the shell. But

whatever may be possible in theoretical spaces of higher

order, we need not accept an unintelligible fourth

dimension to aid in the explanation of something

equally unintelligible.

It may be said in conclusion, that the only "explana-

tion of the fourth dimension" that can reasonably be

given, is to say that, in the sense in which the expression

is used, the fourth dimension is absolutely non-existent.

It could have meaning only to designate the dimension,

in addition to the three that we know, belonging to the

imaginary mathematical hypothesis of four-dimension

space. The "fourth dimension" has no relation to the

actual universe in which our sensations and perceptions

are exercised, and belongs to that realm of thought to

be entered only by the select few, whose exceptional

genius includes the development of the mathematical

imagination.
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IV.

THE BOUNDARY OF THE FOUR-DIMENSIO-
NAL UNIT AND OTHER FEATURES OF

FOUR-DIMENSIONAL SPACE.*

BY "PLATONIDES."

The schoolboy early becomes familiar with linear

measure, square measure, and solid or cubic measure.

He understands them respectively as "the measure-

ment of lengths," "the measurement of surface which

depends on length and breadth taken conjointly," and

"the measurement of volume which depends on length,

breadth, and height all taken together." The first in-

volves one dimension, length ; the second, two mutually

~7VD

B

Fig. i.

perpendicular dimensions, length and breadth, multi-

plied together; and the third, three dimensions, each

perpendicular to the other two—length, breadth and

height, all multiplied together. Let the units of these

three kinds of measure (e. g., foot, square foot, and

cubic foot) be represented by a line AB, a square AB
CD with that line as side, and a cube ABCD-G with

that line as edge and that square as base (Fig. i).

Second honorably mentioned essay.
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1

The unit AB may be regarded as made up of an indefi-

nitely large number M of points arranged continuously

from A to B; the square ABCD then contains M X M
=M2 points ; and the cube ABCD-G contains M X M
X M =M* points. One can go from any point in AB
to any or every other in AB by moving in the one

fixed direction of AB; similarly, from any point to

any or every other in ABCD by moving in the two
fixed directions of the bounding lines ; and likewise in

ABCD-G by moving in the three fixed directions of the

bounding lines (direction forward or backward being

regarded as the same in every case). Hence, with

regard to motion from one point to another, the first

unit is one-dimensional, the second, two-dimensional,

and the third, three-dimensional.

Man can make no motion which cannot be resolved

into a combination of three mutually perpendicular

directions; he can reach no place which cannot be

reached by going north or south, east or west, and

upward or downward; he can find no point in a room
which cannot be found by moving in the direction of

the length, breadth, and height of the room. Sight

reveals two dimensions directly, the breadth and. the

height of the object beheld, while the third dimen-

sion, the distance of the object, is estimated by means

of the muscular turning of the eyes to focus them on

it. No sense calls for a fourth direction, perpendicu-

lar to the other three; in fact, all of man's experience

leaves him satisfied with three dimensions.

Leaving experience behind and reasoning wholly

from analogy, the fourth dimension is introduced as

follows : Four-dimensional measure depends on length,

breadth, height, and a fourth dimension, all multiplied

together. It involves four linear dimensions, each per-
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pendicular to the other three; consequently the fourth

dimension is at right angles to each of the three dimen-

sions of the three-dimensional measure. Its unit must
have AB as edge, the square ABCD as face, and the

cube ABCD-G as base. It contains M X M X M X
M=M4

points. To travel from any point to any or

every other point in it is possible by moving in the

four fixed directions of its bounding lines.

The square ABCD (Fig. i) is derived from the line

AB by letting AB with its M points move through

a distance of one foot in a direction perpendicular to

the one dimension of AB; every point of AB in this

motion describes a line, and ABCD contains, there-

fore, M lines, as well as M2
points. The cube ABCD-G

is derived from the square ABCD by letting ABCD
move one foot in a direction perpendicular to its two
dimensions ; its M lines and M2

points describe re-

spectively M squares and M2
lines; accordingly

ABCD-G contains M squares, M2
lines, and M3

points.

Similarly, the four-dimensional unit is derived from

the cube ABCD-G by letting that cube move one foot

in a direction perpendicular to each of its three dimen-

sions, i. e., in the direction of the fourth dimension

;

its M squares, M2
lines, and M3

points describe respect-

ively M cubes, M2
squares, and M3

lines ; accordingly

the four-dimensional unit contains M cubes, M2

squares, M3
lines, and M* points. Considering the

boundaries of the units, AB has two bounding points,

ABCD has four, ABCD-G has eight—four each from

the initial and the final positions of the moving
square—and the four-dimensional unit has 16—eight

each from the initial and the final positions of the

moving cube. Of bounding lines, AB has one (or is

itself one), ABCD has four, ABCD-G has twelve—
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four each from the initial and the final positions of the

moving square, and four described by the four bound-

ing points of that square; and the four-dimensional

unit has 32—twelve each from the initial and the final

positions of the moving cube, and eight described by

the eight bounding points of that cube. Similarly, of

bounding squares, ABCD has one (or is itself one),

ABCD-G has six—one each from the initial and the

final positions of ABCD, and four described by the

bounding lines of the moving square—and the four-

dimensional unit has 24—six each from the initial and

the final positions of the moving cube and twelve de-

scribed by the bounding lines of the moving cube.

Finally, of bounding cubes, ABCD-G has one (or is

itself one), and the four-dimensional unit has eight

—

one each from the initial and the final positions of the

moving cube, and six described by the bounding

squares of the moving cube.

If the bounding lines of the square ABCD are sup-

posed to be made of a continuous wire and that wire

is cut at D, the boundary may then be folded down
into line with AB, forming a one-dimensional figure

(Fig. 2) of four linear units. The original linear

D A B C U

Fig 2.

unit AB has one linear unit at either side of it and

an extra one, CD beyond on one side. If the cube

ABCD-G has its bounding squares supposedly made of

a continuous sheet of tin and that sheet is cut along

the lines EF, GH, HE, AE, BE, CG, and DH, the

square faces can be folded down to form a two-dimen-
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sional figure of six squares. The square ABCD has a

square at each side of it and an extra one, EFGH, be-

yond on one side (Fig. 3). Likewise, if the four-

E

H

D C

A B

E F

Fig- 3-
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Fig. 4.

dimensional unit has its bounding cubes made of con-

nected solid wood and this wood is cut through the

appropriate planes, the cubes can be folded down to

form, by analogy, a three-dimensional figure of eight

cubes. The cube ABCD-G has a cube at each side of

it and an extra one beyond on one side (Fig. 4).

These eight cubes, now forming a three-dimensional

figure, constituted the boundary of the four-dimen-

sional unit.

The following table shows the results obtained for

the contents and the boundaries of the four units

considered

:

CONTENTS.

One-dimensional unit
Two-dimensional unit....

Three-dimensional unit...

Four-dimensional unit

Points. Lines. Squares.

M 1

M 2 M 1

M 3 M2 M
M4 M 3 M 2

Cubes.
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BOUNDARIES.

One-dimensional unit..

,

Two-dimensional unit. .

,

Three-dimensional unit
Four-dimensional unit.

Points. Lines. Squares.

2 i o

4 4 i

8 12 6

16 32 24

Cubes.

The reasoning used is capable of extension at once

to units of five, or even more, dimensions.

If the one-dimensional unit is extended indefinitely

to the right beyond B and to the left beyond A so that

its length becomes greater than any number one can

name, it represents a one-dimensional space. Simi-

larly, the indefinitely great extension, equally in every

dimension, of the other units gives a representation

respectively of two-dimensional, three-dimensional, and

four-dimensional spaces.

The one-dimensional unit is separated from the rest

of the one-dimensional space in which it lies by two

points, the two-dimensional unit from the rest of its

two-dimensional space by four lines, the three-dimen-

sional unit from the rest of its space by six squares,

and, similarly, the four-dimensional unit is separated

from the rest of the four-dimensional space in which

it lies by eight cubes. To inclose an object of any

number of dimensions in space of the same number
of dimensions demands, in one-dimensional space, two

points, in two-dimensional space, at least three lines,

in three-dimensional space, at least four planes, and,

in four-dimensional space, at least five three-dimen-

sional spaces.

As with the units, so with the spaces, any point can

be reached from any other in the same space by mov-
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ing in as many fixed directions, each perpendicular to

the rest, as that space has dimensions.

Time represents a one-dimensional space; for it

proceeds in one direction only from an indefinitely

remote past to an indefinitely distant future (Fig. 5).

Fig. 5.

The present is a point traveling through time (or

allowing time to slip past it) with uniform velocity;

and any point in time can be reached by traveling

through a definite distance (in years, months, etc.)

from one chosen fixed point (e. g., the birth of Christ).

Any portion of the earth's surface, regarded as a

plane, represents a portion of a two-dimensional

space; and the two fixed directions are those of lati-

tude and longitude. An illustration of three-dimen-

sional space is that space—to man's perception—in

which the universe is placed. Man can find no illus-

tration of a four-dimensional space.

If two lines, AB and B'A\ in the same one-dimen-

sional space are symmetrical about a point of that

space (Fig. 6), AB cannot be so moved in that space

A B B 1 A 1

Fig 6.

that the corresponding points shall coincide {A with

A, B with B', etc.). To effect such coincidence, it is

necessary to rotate AB through two-dimensional

space about O as a center; or, roughly speaking, AB
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must be taken up into two-dimensional space, turned

over, and put down on B'A'. Likewise, if two tri-

angles, in the same two-dimensional space, are sym-

metrical with respect to a line (Fig. 7), such coinci-

Fig. 7.

dence of corresponding points and lines can be effected

only by rotating one triangle through three-dimen-

sional space about the line of symmetry; or, roughly

speaking, one triangle must be taken up into three-

dimensional space, turned over, and put down on the

Fig. s.

other. Again, if two polyhedral figures in the same

three-dimensional space are symmetrical with respect

to a plane (Fig. 8), coincidence of corresponding

points, lines, and planes can be effected only by rotat-
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ing one polyhedral figure through four-dimensional

space about that plane; or, roughly speaking, one of

the polyhedral figures must be taken up into four-

dimensional space, turned over, and put down on the

other. A right hand and its reflection (a left hand) in

a mirror are symmetrical with respect to the plane of

the mirror and rotation about that plane would effect

coincidence. Such rotation would make a right glove

become a left glove; or, roughly speaking, a right

glove tossed up in the direction of the fourth dimen-

sion and turning over there will fall back a left glove.

The inability of man to locate the fourth dimension

or to detect the existence of a four-dimensional space,

even if it be close at hand, is comparable with the

inability of a two-dimensional man, inhabiting a two-

dimensional space, to locate the third dimension or

to detect the existence of three-dimensional space,

even though his own space might be part of it, as a

plane is part of a solid. Suppose the two-dimensional

space represented by this page to be inhabited by

two-dimensional beings. They have length and

breadth, can move in those two dimensions, and are

supposedly conscious of them. They have no thick-

ness, cannot rise from the paper or sink beneath it,

and are unconscious of any dimension in such a direc

tion; they have no "upward" and no "downward."
Let them have intelligence concerning all within

their space to the extent that man is intelligent re-

garding his universe; let them possess houses and

barns, and in general let their life be as rich as may
be. Their houses and barns will have no roofs and no

floors, for the bounds of the space itself alone are

there. Three lines are sufficient to inclose any ob-

ject in their world, and the flat-man himself is ex-
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posed only along his polygonal contour; the interior

of his polygon—his own interior—is to be reached

only through his contour, for there is no "above"

and no "below" within his cognizance. To convince

him that a third dimension of "upward" and "down-

ward" exists, touching and leading from even the in-

terior of his polygon—his own internal parts—would

be a hopeless task. Even if he accepts the arguments

from analogy as to the properties of such a dimen-

sion, he would rebel at the idea of looking within

himself to find it. Yet, even there, at right angles to

the two dimensions which he knows, it is to be found

—as well as everywhere else in his space. And, simi-

larly, within himself, quite as much as anywhere else,

must man look if he is to find the fourth dimension.

Were one to explain to this flat-man that a three-

dimensional being, approaching from the direction of

that unknown third dimension, could reach within his

most securely locked barn and remove its contents

without opening a door or breaking a wall—or could

touch the very heart of the flat-man himself with-

out piercing his skin—the flat-man might still be

none the nearer to an appreciation of the third dimen-

sion. Equally impossible is it for man to understand

from what direction a four-dimensional robber must

come to steal the treasures from the soundest vault

without opening or breaking it—or by what way of

approach the four-dimensional physician would reach

to touch the inmost spot of the human heart without

piercing the skin of the body or the wall of the heart

;

yet the route of such a robber and of such a physician

lies along the fourth dimension. By that route must

come the four-dimensional being who is to remove the

contents of the egg without puncturing the shell or
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drink the liquor from the bottle without drawing the

cork. Such four-dimensional creatures, inhabiting a

space containing the three-dimensional space where

man lives, would constitute the most perfect of ghosts

for man's world; and the absence of such ghosts

argues against the existence of a four-dimensional

space so situated and so inhabited.

Algebra demands that geometry picture all its prob-

lems ; and since an algebraic problem may contain

four or five or more unknown quantities quite as well

as any lesser number, algebra demands a four-dimen-

sional, five-dimensional, or higher space for its use

quite as imperatively as the spaces of lower dimen-

sions. Perhaps certain phenomena of molecular phy-

sics or the mechanical principles of the electric cur-

rent may find a complete explanation only with the

use of the fourth dimension. Perhaps the fourth

dimension escapes man's discovery only because the

measurements in its direction are always very minute

in comparison with the measurements in the three

other dimensions. Thus far, however, the space of

four dimensions—and all spaces of more dimensions

—may be only "the fictitious geometric representation

of an algebraic identity."
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V.

HOW THE FOURTH DIMENSION MAT BE
STUDIED.*

BY "CHARLES HENRY SMITH" ( CARL A. RICHMOND,
CHICAGO, ILL.).

A colony of bees housed in a hive with glass walls

so that their every movement can be observed affords

a very instructive lesson in natural history. Such a

glass hive may also serve as a helpful illustration in

a consideration of the fourth dimension. Let us

imagine a hive with its floor and roof of horizontal

glass plates brought so close together that there is

barely room for the bees to move about between them,

and, for the purpose of our illustration, let us endow
the bees with the intelligence of men. To these bees,

so confined, forward and backward, right and left,

would be familiar ideas and their world would be

one of two dimensions only. Debarred from upward
and downward movement by the closeness of the glass

plates, the words "up" and "down" would be mean-
ingless to them because there would be no experience

upon which to base these ideas. Imperfect as is the

illustration, it suggests the conception of a world of

only two dimensions, length and breadth.

Plane geometry is a science which deals with such

figures as triangles, squares, and circles. It is inter-

esting to know that it originated in Egypt where it

was developed to facilitate the measurement of land.

* Third Honorably Mentioned IJssay.
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This origin of the science gave rise to the name
geometry, which means earth measurement. Long
subsequent to the era of its Egyptian development the

science was extended under the names of solid geom-
etry to a study of such figures as spheres, cubes, and

cones.

The bees in the glass hive could move around a

square, could make triangles and circles, and to them
plane geometry would be a practical science; but with

their ignorance of an up-and-down direction, a cube

or sphere would be inconceivable, and a third dimen-

sion would appear to them as absurd and unthinkable

as a fourth dimension does to us. Suppose we lay

two pencils on the table so as to cross one another

at a right angle and then hold a third pencil so as

to form right angles with the other two. While this

is obviously a possible thing for us to do, it would
be impossible for the bees with their ignorance of

the dimension of height. They could, of course, have

two slender pencils in their hive at a right angle to

one another, but they could not have a third pencil at

right angles to both of the first two. We may look

upon the two pencils as representing the two dimen-

sions of the world of the bees, and the three pencils

as representing the three dimensions of our world.

Suppose, further, that some one tells us to hold a

fourth pencil at right angles with the other three.

In our field of experience we can find no place for it,

just as the bees could find no place in their field of

experience for the third pencil. This fourth pencil

represents the so-called fourth dimension. Although

it is impossible for us to place it, the illustration of

the relation of the bees to the third pencil or dimen-

sion teaches us that the limitations of experience
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ought not to be deemed conclusive as to how many
dimensions space may have.

It is a matter of pure speculation as to whether

there is such a thing as a fourth dimension, whether

there are beings of intelligence to whom phenomena

are manifested in the form of four dimensions. It is

by no means the attitude of mathematicians instantly

to recoil from the suggestion, but they are pleased to

go ahead and study as accurately as possible under

the necessary limitations what may be the properties

of a space of four dimensions, if there is any such

thing. The fundamental guiding principle of their

investigation is this: Whatever they find to be the

relations of geometry of two dimensions to geometry

of three dimensions, they assume that there are simi-

lar or analogous relations between geometry of three

dimensions and geometry of four dimensions. As the

circle is to the sphere, so is the sphere to some un-

known body, which may have its existence in space

of four dimensions. As the square is to the cube so

is the cube to a figure in space of four dimensions

which we may call the "cuboid."

Of course the fourth dimension is intangible. Mathe-

maticians do not ask us to imagine a fourth dimen-

sion, much less do they ask us to believe in it. It is

not to be supposed that the most skilled student in

this subject has a mental picture of four-dimensional

space. Nevertheless, the properties and relations of

figures existing in four-dimensional space may be

investigated and stated.

Algebra is the science of numbers. It is a very

vefficient aid in the study of geometry. Algebra deals

largely with equations such as x.yt— 12, which means

that x and y are two variable numbers that multi-
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plied together, give 12, as for example, 3 and 4 or

5 and 22/5. All the simpler figures of geometry such

as the straight line and the circle may be represented

by equations ; in other words, the equations are con-

densed descriptions of the respective geometrical fig-

ures, somewhat as a score-card is a condensed de-

scription of a base-ball game. Mathematicians have

learned that the properties of geometrical figures can

be studied far more readily by means of their equa-

tions than by means of the figures themselves. A
mathematician who understands this mode of study

can look at the equation of a curve and tell all sorts

of interesting and useful properties of it without ever

seeing the Curve itself—indeed, without even having

any mental picture of what the form of the curve

may be.

Without going into detail, it may be stated that one

equation with two variable numbers represents a

plane figure, thus x2 + 3'
2 =15 represents a circle.

One equation with three variable numbers represents

a figure in space, thus x 2
-\- y

2— .c
2 = o represents a

cone. What does one equation with four variable

'"numbers represent, say, for example, x2 + y
2 + z

2 +
w2 = 20 ? By analogy, we should say a figure in space

of four dimensions. Althought we cannot imagine such

a thing, we can pursue our analogies and study this

unreal figure by means of its equation, and thus we
can deduce many of its properties. The difference is

simply this : whereas, when we study the equation

of a cone, we can always turn to the real cone and

interpret our results thereon, when we study an equa-

tion of a four-dimensional figure we have to be satis-

fied without such an interpretation. In other words,

although our geometry halts with three dimensions
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our algebra marches on to any number of dimensions

and is a stimulus to imagine a geometry of more than

three dimensions.

We will now outline briefly a way in which algebra

may help to give a person some faint notion of a

figure having four dimensions. It is somewhat com-

mon to study a figure having three dimensions by

means of equally spaced parallel sections thereof. For
example, if the microscopist wants to study the shape

and structure of a germ cell, he slices off exceedingly

thin sections and arranges them in succession on a

glass slide. Then by looking at these sections in suc-

cession he can form an idea of the solid structure of

the germ cell. Mathematicians have rules by which

such sections of a solid figure may be constructed by

means of equations. They start with an equation

which represents a solid body, for example, x2 + y
2 +

z
2 = 9 representing a sphere, and they perform certain

operations by which they get a series of resulting

equations that represent the successive sections of the

solid body. It remains, then, merely to draw pictures

of the sections from the data afforded by the result-

ing equations. By looking at all these pictures, a

person may get a fair idea of the shape of the original

solid. In the case of a sphere the sections are circles

of varying size. As we have already stated, an equa-

tion having four variable numbers, should by analogy

represent a figure in space of four dimensions. Sup-

pose we have such an equation, as .r
2 + y

2 + -
2 + iv

2

= 20. We can apply the same rules and perform the

same operations to get sections of the figure repre-

sented by this equation. Curiously but consistently,

these sections come out as solid figures. From the

data afforded by the resulting equations, the mathe-
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matician can model these solid figures in clay and

lay them in a row on the table before him. Just as

the microscopist looks at the series of sections on his

slide to get an idea of the solid structure of the germ
cell, so the mathematician can look at the series of

clay models before him and possibly feel that he has

some idea of the nature of the four-dimensional figure

represented by the equation with which he started.

Thus we see how the fourth dimension may be

studied by means of the equations which algebra fur-

nishes. There is another bolder way. We have seen

that we can hold three pencils so that each one of

them will make a right angle with each of the others.

Instead of saying that it is absurd to suppose that a

fourth pencil can be held in a position so as to form

right angles with each of the first three pencils, let

us assume that it can be done. Without any further

assumptions a complete geometry of four dimensions

can be built up by pure reasoning. Many of its con-

clusions are no more obvious to the senses than is the

fundamental assumption with which it starts. Still

that is the only assumption; all else may be deduced

from that one assumption and from the principles of

our well-known plane and solid geometry.

An illustration of a special method in the study of

space of four dimensions may serve to show how
mathematicians reason about such things without

being able actually to imagine them. We proceed by

ascertaining the relations between two dimensions and

three dimensions, and then establishing these rela-

tions by analogy between three dimensions and four

dimensions. Suppose we have a glass cube resting

on the table before us and we close one eye and look

straight down upon it with the open eye. Its appear-



SIMPLY EXPLAINED 87

ance will be as shown in the accompanying drawing;

This drawing is really a plane figure, of two dimen-

sions, and it might have been produced in the follow-

ing manner; namely, by drawing one square inside of

another and then drawing lines connecting the corre-

sponding corners. All this could be done without any

Top view of glass cube as seen with one eye : a three-

dimensional figure appearing in one plane.

thought of three dimensions. The bees in the glass

hive could draw such a figure as the one here on the

paper before us. Nevertheless, on this figure many of

the properties of the cube can be studied. By count-

ing the four-sided figures (ABCD, EFGH, AEFB,
BFGC, CGHD, DHEA), which we find to be six, we
learn how many faces the cube has. By counting the

corner points, which are eight, we learn how many
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corners the cube has. By counting the lines, which

are twelve, we learn how many edges the cube has.

Just as starting with the squares we are able to get a

two-dimensional figure, which, for the purpose of

investigation, may be taken as representing the cube,

may it not be possible that starting with cubes we

Analogous view of a "cuboid" of four dimensions appearing

as a figure of three dimensions.

can get a three-dimensional figure which shall repre-

sent the four-dimensional figure which we call the

cuboid? Just as we drew a smaller square inside of

a larger one, so we should think of a smaller cube

inside of a larger cube, and just as we drew lines

joining the corresponding corners in the case of the

squares, so we should make planes joining corre-

sponding -edges in the case of the cubes. The figure
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so formed is somewhat imperfectly pictured in the

accompanying drawing, and for the sake of clearness,

let us suppose we have such a solid glass figure before

us. In the case of the squares, to find from them how
many square faces the cube has, we counted the big

outer square, the small inner square and the four sur-

rounding figures and got six as the result. So in the

case of the cubes, to find from them how many cube

faces the cuboid has, we count the big outer cube, the

small inner cube and the six surrounding solid bodies

and thus get eight as the result; this indicates that

the cuboid has eight cube faces. A further study of

this representative figure discovers that the cuboid has

24 plane square faces, 32 edges, and 16 corner points.

This shows how we can get a representation of a four-

dimensional body, and on this representation we can

study its properties. There are many considerations

which we have not space to present which confirm the

accuracy of the deductions that have just been stated.

What is the use of such generalities, abstractions

and speculations ? About the same as to know whether

the earth goes around the sun or the sun goes around

the earth. Space is as properly an object of scientific

study as are planets or geological strata. Moreover,

the study of these fundamental things in geometry

throws light on the nature of our own mental equip-

ment. We learn better what is the nature of reason-

ing processes and how knowledge is built up from

simpler and more fundamental elements. Such specu-

lations sometimes lead to very useful results.

If you hold 5 marbles in your hand and are told to

take away 8 of them, this suggestion seems as un-

thinkable as the suggestion of a fourth dimension.

But when men chose to represent by —3 the result of
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subtracting 8 from 5, instead of simply saying it was
impossible, then the foundation was laid for the enor-

, mously useful science of Algebra.

The assumption of a fourth dimension has not as

yet led to any noteworthy useful results, but it is by

no means impossible that the science of four-dimen-

sional geometry may come to have useful applications.

It has been suggested by Prof. Karl Pearson that an

atom may be a place where ether is flowing into our

space from a space of four dimensions. It can be

shown mathematically that this would explain many
of the phenomena of matter. At the present stage, the

suggestion is regarded, even by its author, as merely

fanciful, though it is not as fanciful as the proposi-

tion of the German spiritualists who regard the fourth

dimension as the abode of their disembodied spirits.
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VI.

SPACE AND HYPERSPACE.

BY "tESSERACT" (CLAUDE BRAGDON, ROCHESTER, N. Y.).

The baffling thing about speculation concerning the

fourth dimension of space lies in the fact that we must

reshape our very idea of space. We naturally think

of space as the box which contains all the furniture

of consciousness, and in altering our conception of it,

as it is necessary to alter it in postulating an additional

dimension, we are dealing, not with the contents, but

with the box.

Let us think, not of space, but of spaces, differen-

tiated from one another by their dimensionality and

designated in terms of it, so that the greater the num-
ber of its dimensions the "higher" will be the space.

Let us think of each higher space as generated from

the one next below it, and as having the properties

and dimensionalities of all spaces lower than itself

patent, and higher than itself, latent.

Our space has three dimensions, and within it are

given the conceptions of point and line, line and plane,

plane and solid. These involve the relation of our

space to higher space, and of lower space to our own.

One segment of a straight line is separated from

another by a point, and the straight line itself can be

generated by the motion of a point. One portion of

a plane (2 space) is separated from another by a

straight line, and the plane itself can be generated by

the movement of the straight line in a direction not

contained within itself. Again, two portions of a solid
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(3 space) are separated from one another by a plane,

and the plane, moving in a direction not contained

within itself, can generate the solid. From this it

is possible to formulate a definition of space irrespec-

tive of its dimensionality: Space is that which sepa-

rates two portions of higher space from each other.

Also: Our space will generate higher space (i. e., 3

space will generate 4 space) by moving in a direction

not contained within itself.

In the generation of the. plane by the line, and the

solid by the plane, the "direction not contained within

itself" is inevitably a direction at right angles to the

line and to every line of the plane. Hence, a move-
ment in the fourth dimension is a movement in an

unknown direction at right angles to every known
direction embraced within three-dimensional space.

Proceeding now from general to particular, let us

endeavor to form some idea of the simplest symmet-

rical four-dimensional solid— a tesseract— corre-

sponding with a square in 2 space and a cube in 3

space.

In 2 space a square surrounded by four other

squares, one on each of its four lines, wTould be com-

pletely bounded and inclosed; but if this same square,

together with its surrounding squares, moved in a

direction at right angles to its surface (i. e., out of 2

space into 3 space) a distance equal to the length of

one of its sides, it would trace out a cube bounded by

four other cubes. To inclose it completely in 3 space it

would be necessary to add two more bounding cubes,

the first to that face which coincides with the square

in its first position, and the second with the square in

its final position, i. e., in the positive and negative

ways of the third dimension. The cube would then
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be completely bounded and inclosed in 3 space.

Imagine now that the cube, together with its six sur-

rounding cubes, moved in a direction at right angles

to its every dimension (i. e., out of 3 space into 4
space) a distance equal to the length of one of its edges,

then it would trace out a higher cube, or tesseract, and

each of the six surrounding cubes, carried on in the

same motion, would trace tesseracts also, grouped

around the original center tesseract. But would they

inclose it completely ? No ; because as in the former case

there would be nothing between the cube and that from

which its motion started. The movement in the new
dimension would not be bounded by any of the six

cubes, nor by what they formed when moved. It

would therefore be necessary to add two more bound-

ing tesseracts, in the positive and negative ways of the

unknown, or fourth dimension, at the beginning and

at the end of the motion.

In this manner it is established that a tesseract is

completely inclosed by eight similar tesseracts ; and

because the faces of a tesseract are cubes, a tesseract is

bounded by eight equal cubes.

Xow just as the cube has squares, lines, and points

as elements, so the tesseract has cubes, squares, lines,

and points as elements. Let us examine these.

In the movement of a cube, which consists of six

squares, twelve lines, eight points, into 4 space, the six

squares would give six squares in their initial, and six

in their final position ; and each of the twelve lines of

the cube would trace out a square. Hence, a tesseract

is bounded by twenty-four equal squares (6 + 6 -f-

12), and further analysis by means of models or

diagrams reveals the fact that each is a meeting sur-

face of two of the cubic sides.
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The twelve lines of the cube, in its movement into 4
space, give twelve lines of the tesseract in their initial,

and twelve in their final position, while each of the

eight points traces out a line. Hence, a tesseract is

bounded by thirty-two lines (12 + 12 + 8), and fur-

ther analysis by means of models or diagrams reveals

the fact that each is common to three cubes or to three

square faces.

The eight points of a cube, in its movement into 4
space, give eight points in their initial, and eight in

their final position. Hence, a tesseract has sixteen

points (8 + 8), and further analysis shows that each

is common to six square faces and to four cubes.

Although by these means it is possible to form a

conception of the elements and projections of a

tesseract in our space, and even to depict them graphic-

ally by a series of related diagrams, the intellect fails

in its effort to co-ordinate these into one figure, that

is, to picture the tesseract itself. The chief difficulty

lies in the fact that it is next to impossible to think of

a cube, a solid of our space, as a mere boundary—one

of the sides of a higher solid. A study of the corre-

sponding predicament as presented to 2 space con-

sciousness will be of assistance here.

In a hypothetical plane-world, to a hypothetical

plane-being, endowed with a body and a mind like

our own, but minus the power of movement in the

third dimension and, therefore, minus the consciousness

of it, a square would be a solid body, being completely

enclosed by boundaries, in the form of lines, through

which he can neither see nor pass. The essential ^sub-

stantiality of such a body and its property, known to

us, of being one of the boundaries of a solid in our

space, would seem to him no less a paradox than the
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cube as a mere boundary of the tesseract seems a para-

dox to us. The square rests in 2 space, and to the con-

sciousness of that space it is a solid if we define a solid

as a completely bounded figure the interior of which

cannot be reached without the disturbance of its

boundaries. According to the same argument, a cube

in our space is a solid only to our perception, and with

relation to our space. In 4 space, or to four-dimen-

sional consciousness, it loses its "solidity" in becom-

ing the boundary of a higher solid, for the solid of any

space becomes the boundary of a corresponding solid

in higher space.

A rotation in 2 space takes place about a point; in

3 space about a line; hence, by analogy, a rotation in

four dimensions takes place about a plane.

In 2 space, right-handecj and left-handed similar

right-angled triangles could never be made to coincide

by any motion proper to that space, but their perfect

coincidence could be effected easily by the rotation of

one of them in the third dimension, about the line of

one of its sides. So, in our space, corresponding right

and left-handed solids of the same elements and equal

volume, like the right and left hands, for instance,

could be made to coincide by the rotation of one of

them about a plane. The mirror image of a solid

represents the solid after such a rotation.

The number and the variety of deductions concern-

ing 4 space which can be made from simple premises

of the above order is almost infinite, but a sufficient

number of examples have been given to explain the

what and hozu of 4 space. Where is it?

Go back to our first definition : Space is that -which

separates two portions of higher space from each

other. Conceive of 2 space therefore as a vertical
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plane, separating two portions of 3 space from each

other. Now, in order that this separation should be

effective, the plane must be something more than a

mere geometrical abstraction, that is, if it is a "real"

plane, it must have a very slight thickness. Its parti-

cles will have a free movement and circulation in the

two principal dimensions of the plane, but their power

of movement in the third dimension, being limited by

its thickness, which we assume to be so slight as to be

inappreciable, will be confined to the infinitely minute.

This is the hypothetical space of the hypothetical two-

dimensional "man," but if he were set clown in it,

without some world to tread, some solid ground to

push off from, he would be in a condition analogous

to that in which we should be if we were suspended

free in space. Let us give him his world : this would

naturally be a vertical disk, the cross-section of a

sphere, made of the matter of his space, held together

by an attractive force analogous to gravity, which not

only makes and preserves the form of his disk world,

but holds him to the rim which is its surface. The
direction of this attractive force of his matter would

give him a knowledge of up and down, determining

for him one direction in his plane space ; also, since he

can move along the surface of his earth, he will have

the sense of a direction parallel to its surface, i. e., for-

ward and backward, but he will have no sense of right

and left, the direction extending out into our space,

which is his higher space. This would be for him the

unknown dimension. With the first step in the appre-

hension of 3 space he would come to the conviction

that if the third dimension exists, the objects of his

world which he had conceived of as geometrical figures

of two dimensions only, had a certain, though a very
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small, thickness in the third dimension, that the condi-

tions of his Existence demanded the supposition for an

extended sheet of matter, from contact with which in

their motion his objects never diverged.

Exactly analogous suppositions must be formed by

us with regard to 4 space, namely : that our space sepa-

rates two portions of higher space from each other;

that in the infinitely minute of our world there is

extension and the power of motion in the fourth

dimension ; that there is a direction toward which we
can never point extending from every point of our

space, and that we "slip along" this invisible wall of

higher space which we must give up any attempt to

picture in relation to ours just as a plane being would

have to give up any attempt to picture the plane at

right angles to his plane.

Kant imagined that space might contain more than

three dimensions. He even infers their "very probable

real existence." Gauss and the non-Euclidean geom-

eters have established a distinction between laws of

space and laws of matter which clears the way for a

conception of space of any dimensionality. To such a

conception mathematics lends itself in a truly remark-

able manner. It is reasonable to suppose that the

fourth power of a number should have its spatial

equivalent, just as a square is the spatial equivalent of

its second power, and a cube of its third. Moreover,

it is just as possible to deal with four dimensions

arithmetically as with three and by analogous opera-

tions, and the shapes, movements, and mechanics of

simple four-dimensional solids can be made intelligible

to the understanding—in other words, the mind finds

itself still at home in regions where the senses do not

operate.
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The fact that we can apprehend but three dimen-

sions does not disprove the existence of a fourth, and

for the following reason. All our strictly sense im-

pressions are two-dimensional, for we can see and

contact only surfaces. Touch teaches that an object

retains the same form and extension through all the

variations of distance and position under which it is

observed, notwithstanding that the form and extension

of the image on the retina change constantly with the

variation in position and distance of the object in

respect to the eye. The reconciliation of the apparently

contradictory facts of the invariableness of the object

and the variableness of its appearance is only possible

in a space of three dimensions, in which, owing to

perspective distortions and changes, these variations of

projection can be reconciled with the consistency of

the form of a body. Consequently we come to the

idea of the third dimension by an intellectual process

in order to overcome the apparent inconsistency of

facts of the existence of which our experience daily

convinces us. This being so, the moment we observe

in three-dimensional space contradictory facts, our

reason would at once be forced to reconcile these con-

tradictions, and in that attempt a conception of a

fourth dimension of space—if it reconciled the contra-

diction—would arise. Furthermore, if from our

childhood phenomena had been of daily occurrence,

requiring a space of four dimensions for their proper

understanding, we would naturally grow up with the

conception of a space of four dimensions. It follows

that the real existence of 4 space can only be decided

by an observation of facts.

Are there any facts? Many phenomena classed as

"occult," clairvoyance, apparition at a distance, the
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moving of ponderable objects by unseen means, etc.,

can be explained, on their mechanical side, on the

theory of a fourth dimension ; but as the dispute as to

the reality of these phenomena is still going on, the

reality of the fourth dimension may be said to be an

open question.
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VII.

AN INTERPRETATION OF THE FOURTH
DIMENSION.

BY "QUEFANON" (ARTHUR HAAS, NEW YORK CITY).

A ship in a canal could be located at any given time

by a knowledge of its distance from some town, since

its motion from that town has been restricted to one

direction. When space is of such a nature that a point

in it may be located by one measurement from some

fixed or standard point, that space is said to be linear

or one-dimensional.

The same boat on the ocean, however, could not be

located unless two measurements were given—its lati-

tude and longitude. The nature of such space is

defined by the words "surface" or "two-dimensional

area."

If, now, our vessel were converted into an airship

or a submarine, we should be obliged to add to our

other data its distance above or below the sea level in

order to place it accurately. With three basic elements

(in our illustration; the equator, the prime meridian,

and the sea level) and with three known distances

from these elements, we can locate any point that

comes within our consciousness, whether above, on, or

below the surface of the earth. Any additional meas-

urements would be either superfluous or misleading.

Hence we say that our space is three-dimensional.

In this discussion it will be necessary for us to use

graphic representations of changes in one-dimensional,

two-dimensional, and three-dimensional space, and for
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this purpose we shall adopt as illustrations respectively

the movement of mercury in a common thermometer,

the movement of the arms of a semaphore, and the

physical changes which a jellyfish undergoes in the

course of its development.

The rising and falling of the mercury is a one-

dimensional movement. If we wish to keep an auto-

matic record of the temperature during a given period,

it would be an easy matter to pass a strip of photo-

graphic paper behind a thermometer, and allow the sun

or some artificial light to darken the part above the

mercury. If this paper were kept stationery, the only

record we could obtain would be that of the minimum
height of the mercury. Therefore, some movement of

the strip is necessary. If this motion were to be in the

length direction of the thermometer, every part of the

paper would be exposed to the action of the light, and

no record at all would be obtained. We could obviate

this trouble, however, by covering the strip while it

moved through a distance equal to the length of the

thermometer, then exposing it for a short time, and

then again moving it. Thus, without involving a

second dir .ension, we would get a permanent record

of various successive heights of the mercury. These

pictures would be intermittent, and we would miss

the changes that took place while the picture film was
moving. In order to get a complete and continuous

chart of the changes, we must move the paper in a

direction other than that of the length of the ther-

mometer. In short, we are forced to introduce a

second dimension. The strip may be moved by clock

work, and then we would have a two-dimensional

chart, from which we could determine the temperature

at any required time, the horizontal measurement
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showing the time of observation, and the vertical one

the height of the mercury at that time. The result of

this experiment could be read by passing this chart

behind a vertically slotted surface, thus obtaining the

effect of a line whose length varies as the strip of paper

slowly passes the open space. These variations will, of

course, exactly reproduce the variations in the height

of the mercury.

It is not difficult to imagine a being whose percepts

are confined to a linear representation of objects; for

instance, a man whose sense of touch is paralyzed and

whose eye is covered by a cataract in which a vertical

slit has been successfully cut. Better yet, we may
conceive of one whose retina itself is merely a line

instead of a spherical surface. He could not imagine

such a thing as an angle, and it would be as hard to

explain parallel lines to him as to describe color to

a man born blind. He could see the changes in the

height of the mercury just as well as we, but a triangle

passed before his line of vision would present the same
sort of picture, viz., a line increasing in length; and

there would be no way of convincing him of the simul-

taneous existence of all its parallel elements, which to

us is a very simple concept. He could, however, pic-

ture from his memory, and re-produce, two or more
lines which represent the height of the mercury at

different times, but they would all lie in his one-dimen-

sional consciousness as separate pictures.

His knowledge of a growing tree would be confined

to a line with various colored parts which change,

both as the tree grows and as he moves his line of

vision, but the most complex of these changes could be

reproduced by a picture on a plane surface, slowly

passed before his eye. In brief, such a being could
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have a perfect conception of one-dimensional change

merely through a two-dimensional representation.

When we come to consider changes in two dimen-

sions, such, for instance, as are caused by the motion

of the arms of a semaphore, how are we to represent

them. A series of photographs might be taken in rapid

succession, and if these were placed behind each other,

a solid would be formed of which we might say each

picture was a cross section. A book made up of these

pictures in their order is such a solid, and the little

pocket mutoscope exactly satisfies this description. If

its pages are rapidly turned, the successive sections

are presented to our sight, and we apparently see the

arms of the semaphore changing their position. The
kinetoscope with its two-dimensional strip and its

shutter does the same thing more steadily, and presents

the illusion of motion in a two-dimensional area even

better than the little hand mutoscope. The pictures

taken by the mutograph are really always two-dimen-

sional; it is only our experience in shadow and per-

spective which gives us the illusion of motion in three

dimensions when the ordinary "moving picture" is

thrown on the screen. If we left the camera film

unmoved while the semaphore was moving, only a

picture of the stationary parts would be taken, the

rest would be a blur. Hence we must move our picture

film.

If we move it continuously, no record of any posi-

tion of the semaphore will be taken. Here again we
must obviate the difficulty by shutting out the light

while the film moves over a distance equal to the size

of the picture it is to take, then exposing it, and then

covering it again. But no matter how quickly the

camera shutter is snapped, the representations of the
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mutograph can never be continuous. In order to

represent continuous and gradual change from one

position of the semaphore to another, a line must be

used for every point in the semaphore arms, and this

line cannot usually be represented in the same plane as

that in which the motion takes place, without inter-

fering with the path of some other point in the moving
object. A new dimension must be introduced to make
a record of a really continuous change. Thus, a more
nearly correct, though much more difficult, method
of physically representing the phases of the semaphore

arms would be the following : Suppose a plastic mate-

rial (like wax) to be forced against the semaphore

while its arms are moving. A continuous opening

would be left in this material as the semaphore is

forced deeper and deeper into it. Suppose again that

this opening were filled with plaster of Paris, and that

the wax were melted away. We would then have left

a solid body, every section of which would represent a

phase of the semaphore, and which would contain in

itself every position that the movable arms had as-

sumed during the course of the experiment. This

representation is in what we ordinarily call the solid

form ; that is, three-dimensional.

If an imaginary being with a two-dimensional sense,

an "Inhabitant of Flat-Land," w£re to have this solid

passed through his plane, he would see reproduced the

continuous motion of the semaphore arms. Like our

slit-eyed friend, the "Line-lander," and for analogous

reasons, he could not conceive the simultaneous exist-

ence of all these cross sections. But by using his

memory, he. could reproduce some of them as separate

pictures in his two-dimensional world—such pictures,

perhaps, as we have in our kinetoscope film.
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If a small quantity of yeast were allowed to ferment

between the slide and cover glass of a microscope, we
should have under our observation the growth of an

object in practically two dimensions. Now, its phases

at very small intervals could be photographed, but the

same conditions that met us in the case of the sema-

phore, face us again. The only way to represent all

the changes that take place would involve the tracing

of each point from one position to another. This

would produce a line; and since two dimensions are

required to present all the points in their relative posi-

tions at any given time, this line, in order not to be

obscured, must extend beyond the two-dimensional

space in which the growth takes place. We must,

therefore, create a solid, whose successive sections

would be recognized by the two-dimensional mind as

the growth of the object which was passing through

the plane of their consciousness.

In our previous illustrations we were able by the

use of two-dimensional space to fix permanently varia-

tions of position and magnitude of a one-dimensional

object, and in three-dimensional space we were able

to fix permanently the changes of an object moving
or growing in two dimensions.

Coming now to the phenomena of our every-day

world, we know that changes in position and growth

take place continuously in our three-dimensional space,

and that the time element is necessary to determine

exactly the conditions of any variable or movable

thing. Thus the description of a tree would give an

entirely false impression, if only its dimensions were

given without adding the particular time when these

were taken ; and the position of a planet would be in-

completely given, unless the time of observation were
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reported together with the other three necessary meas-

urements ; even as the position of a ship upon the earth's

surface is not known by its latitude and longitude un-

less we know also when these were calculated, and the

idea of the temperature of a body would be incomplete

unless the record of time accompanied the statement of

the mercury's height above the zero mark.

If we could only picture to ourselves that a three-

dimensional object is merely the cross section of

a permanent four dimensional thing, that what we
are cognizant of is merely a phase of a thing which

exists in its entirety, and of whose other phases we
are ignorant, till they are brought to our own con-

sciousness or till our consciousness reaches them,

then we could conceive the physical nature of a

four-dimensional object. Considering, for instance,

our own material bodies, we are conscious of a

gradual change of shape and position of all the parts,

and yet, at the same time, we are conscious of a con-

tinuing identity throughout all these changes. Our
past experiences are as real as the experiences we are

now undergoing. Those past experiences, or phases

of our existence, are as much a part of us as the

present ones, and yet owing to the limitations of our

three-dimensional consciousness we can reproduce past

conditions only in memory. Nevertheless our lives

in their completeness are made up of the sum
of all our experiences and if our whole lives are con-

sidered as units, and each period of which we are con-

scious requires a three-dimensional space, then each

individual may be considered as a four-dimensional

solid.

Let us, however, take a more simple illustration.

A biologist wishes to present to his class a concrete
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means of studying the jellyfish. He orders his pattern-

maker to model perhaps fifty copies of the animal in

question, showing the changes from the Qgg to the

perfect adult. These are molded in glass, and are

brought into the classroom for study.

Now, although every particle of the living jellyfish

is constantly changing, either in size, or position, or

in its relation to neighboring particles, we say it is the

same jellyfish; there is a something that persists

through all the changes ; an individuality which differ-

entiates this animal from all others, although to-day

it is as different from what it was previously as any

two models.

These models may be considered copies of mere

phases of the jellyfish, just as photographs may be said

to represent phases of the fermenting yeast, and two
separate lines may be said to represent corresponding

phases of the mercury length in the thermometer.

But no matter how small the interval which elapses

between the making of two successive models, if there

be any change at all, that change must have involved

many, nay an infinite number, of smaller changes, and

these changes in the case of each atom of the living

organism must have been continuous; that is, they

must be represented by a line, and not by a succession

of separated points, if we would preserve the indi-

viduality of the animal in question.

Xow this line cannot be represented in our three-

dimensional space without interfering with other atoms

which surround it in three directions. We are com-

pelled, therefore, as in the previous illustrations, to

go outside the space in whicl he change takes place,

in order to represent completely the continuous change

in anything which preserves its individuality while
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changing. Hence, to represent graphically a gradual

change or growth in a three-dimensional object, a four-

dimensional space is necessary; and the representation

in such space of a fixed and permanent object which

combines all the phases of a three-dimensional solid

would constitute a four-dimensional figure.

Mind you, I do not say that a growing jellyfish is

necessarily a fixed four-dimensional object, passing

through three-dimensional space, but I do say it could

be so represented; and that then a four-dimensional

mentality could see any or all of its three-dimensional

phases simultaneously, just as we can in a two-dimen-

sional chart perceive simultaneously all the lengths of

a varying line. To get a vague conception of such a

fcur-dimensional figure, it is necessary for us to group

all our three-dimensional memories of some changing

object between two definite times, and imagine them

merged into a something of such a nature that no

part of one memory picture overlaps a different part

of another, and yet that each of these concepts is itself

complete. This is, of course, impossible to most of us,

but so are many other mathematical and physical con-

cepts.

More scientific but somewhat similar considerations

than those quoted above, have forced all the great mathe-

maticians and many great physicists to accept the fourth

dimension as a solution of many difficulties. Its use

is recognized, almost unconsciously, even by the ele-

mentary student, when he computes the area of a

triangle, for here he multiplies four dimensions and

extracts their square root to obtain a two-dimensional

result, namely, Vs(s-a) (s-b) (s-c). Furthermore, this

theory lends itself to the simplification of many phys-

ical and metaphysical problems. Therefore, its ad-
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herents find an ever-increasing army of converts.

At present our three-dimensional knowledge is itself

very imperfect. We can move unrestrictedly in two
dimensions, but when we attempt to travel in the third,

we are limited more than the fishes or the birds. Our
knowledge of the interior of solids is so dependent upon

surface study, that in order to scientifically study a

single cubic inch of tissue, we must examine thirty

thousand square inch sections cut by a very fine slicing

machine (the microtome).

The transparency of the jellyfish was the exceptional

feature which permitted its use to illustrate a three-

dimensional object whose changes could be studied

without dissecting it.

Our three-dimensional concepts generally are mere

inferences from our two-dimensional knowledge, and

we are easily deluded by our senses in forming them.

When our knowledge of solids becomes as nearly per-

fect as our present knowledge of surfaces, then the

vague four-dimensional figure may assume a more
concrete form. Will this ever happen ? Who can tell ?

Many more revolutionary theories have found concrete

expression, and then obtained a firm foothold against

stronger opposition and with less necessity for their

existence.
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VIII.

LENGTH, BREADTH, THICKNESS, AND
THEN WHAT?

BY "QUESNEL" (LEONARD C. GUNNELL, SMITHSONIAN
INSTITUTION, WASHINGTON, D. C.).

It is difficult for a finite mind to picture, or even to

conceive of conditions unconnected with finite experi-

ences, and unperceivable by finite senses. All finite

experiences are connected in some way with material

substances or with perceivable forces. All material

substances have one or more of the properties of

length, breadth, or thickness, and all physical forces

may in some way be rendered perceivable.

To the lay mind many scientific achievements seem

almost miraculous, though by systematic effort any

educated mind may comprehend any of the achieve-

ments in any of the sciences, for the results have to do

alone with matter and forces, and are expressed in

terms which may be transposed into the equivalent

terms commonly used to describe every-day actions

and experiences.

The science of astronomy, dealing as it does with

infinite masses, infinite forces, and infinite distances,

would seem to require the ultimate effort of a finite

mind to comprehend, but the ultimate problems in

astronomy deal only with masses, forces, and three-

dimensional space, things of common knowledge, con-

nected only in a lesser degree with common every-day

actions and experiences.
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The ultimate theories in physics and chemistry deal

with atomic and molecular forces and masses and with

their interactions; no matter how vast or how minute

are the masses or forces they remain masses and forces,

and their dimensions and activities are described in

terms equivalent to those used in describing all other

qualities and actions.

The qualities of three-dimensional matter we com-
prehend, forces we comprehend, and vibrations we can

comprehend as one of the manifestations of forces;

consequently, when the chemists or physicists in deal-

ing- with ultimate theories claim, as they do, that mat-

ter is simply the manifestation of forces, the idea may
be grasped, though it may or may not be accepted.

Advocates of the fourth dimension ask more of our

reasoning powers in explaining their hypothesis. One
must lay aside all usual comparison with concrete

things in grasping this hypothetical idea, as we can

only reason about the qualities possessed by such a

transcendental figure, the exact nature and form of

which cannot possibly be definitely pictured to a finite

mind. The conception is mental purely and is not con-

nected with, nor necessary to, the solving or under-

standing of any actual problem. Four-dimensional

space is not and cannot be connected with finite prob-

lems or experiences limited, as all such problems and

experiences are, to space of three dimensions. We live

and exist in space, all our problems and experiences are

limited to actions in space.

We know that a point has position alone, but posi-

tion in space with no dimension ; when the point moves

in a straight path a line is traced which has length alone,

the first dimension, beginning at a point and ending at

a point. Should the line move at an angle, say at a
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right angle with itself, a plane is formed having two
dimensions, length and breadth, with a line at the

beginning and a line at the ending of its path, and in

addition two new lines traced by the two points in their

movements. If the motion of the line is at right angles

with the path of the point and for a distance equal to

the length of the line a square is formed in a plane.

A square being a good representative two-dimensional

plane figure, we will use it in our explanation. In

other words, a plane square is a figure having length

and breadth, is bounded by four lines of equal length

which meet at four points. In a similar manner a

cube is formed by moving the plane, at a right angle,

a distance equal to the length of the line ; this cube will

have thickness, the third dimension, in addition to the

length and breadth of the line and the square. As it

begins with and ends with a square and each of the

four lines bounding the first square will, by its move-

ment, trace a new square, it will be bounded by six

squares. It will also have four lines from the orig-

inal square, four lines in the final square, and four

lines traced by the movements of the four points of the

original square, or twelve lines in all, meeting at eight

points; four points from the original square and four

points from the final square.

Let us assemble the above facts for convenience in

comparing them and add to the table the correspond-

ing properties of an imaginary fourth dimensional

figure, these being determined as follows

:

As the line, the first dimension, is formed from a

moving point, so a square, a typical second dimension

figure, is formed from a moving line, making a figrire

bounded by four lines, and as a cube having a third

dimension is similarly formed by a plane moving into
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Number Number Number Number Number
of of of of of

dimen- points lines planes cubes

sions in in bounding bounding bounding
figure figure figure figure figure

Point o 1 o o o

Line 1 2 o o o

Square 2 4 4 o o

Cube 3 8 12 6 o

Corresponding
figure of four

dimensions

—

4 16 32 24 8

the third dimension, making a figure bounded by six

planes, does it not follow that a corresponding fourth

dimensional figure is formed by the movement of a

cube into the fourth direction and will be bounded by

cubes ?

If this is the case and the line derives from the point

two points, and the square derives from the line four

lines and four points ; and if the cube derives from the

square eight points, twelve lines and six planes, does it

not follow that the moving figure gives to the corre-

sponding fourth dimensional figure the following quali-

ties?

The cube at rest has eight points in space, at the end

of its movement it has eight new points in space, its

movement into the fourth dimension has created the

fourth dimensional figure; therefore, the figure should

have sixteen points. The cube has at rest twelve

lines or edges and has at the end of its movement
twelve additional lines, and each of its eight points

has traced a new line, making thirty-two lines or

edges in all for a corresponding fourth dimensional

figure. Similarly, as the cube has six planes at

the beginning and has six new planes at the ending

of its movement, and as its twelve lines will in mov-
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ing trace twelve new planes, there will be twenty-

four planes in the fourth dimensional figure. Now, as

a cube is generated from a moving square, when the

cube moves to generate a figure of the fourth dimen-

sion, the new figure will have a cube at the beginning of

the movement and another cube at the end, and in addi-

tion each of the six squares bounding the original cube

will by their movement trace a new cube, thus adding

six new cubes to the two already mentioned, or eight

cubes in all to bound the new fourth-dimensional figure.

From this line of reasoning we derive from a point

in an ascending scale through the well known figures

and attributes of the first-, second- and third-dimen-

sional figures, the logical attributes of a hypothetical

figure of four dimensions, which is that it is bounded

by eight cubes and has twenty-four planes and thirty-

two lines meeting at sixteen points.

It is not sufficient to say that the incomprehensible

fourth-dimension of geometry, corresponding to the

figure of the fourth power of arithmetic and algebra,

does not exist because we cannot picture it or even

conceive of it, or because it does not enter into any

problem connected with known matter or force. It may
properly be claimed that a three-dimensional figure of

infinite length, infinite breadth, and infinite thickness

would embrace infinite space ; but is it possible to pic-

ture or comprehend what infinite space is? Can a

finite mind picture a space with no ending, space with

no beginning and no ending; limitless space in which

our vast solar system is a mere dot, in which the

known stellar universe is probably also comparatively

a mere dot, although it is actually so vast in extent that

the light from some of its component stars which

started toward us generations ago or centuries ago is
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only now reaching- us. All this known space is, how-

ever, so far as the human mind can picture it, three-

dimensional, though its vastness is well nigh incompre-

hensible.

If space is limitless, the idea is incomprehensible, and

if it is limited its limits are incomprehensible. Space

is limited or it is limitless; in either case the idea

is incomprehensible. Thus the mere statement that

an idea is incomprehensible does not prove its

non-existence. It is common to use as an an-

alogy, in explaining the idea of the fourth dimen-

sion, the possible experiences of hypothetical beings

existing in space of more limited dimensions

than the three dimensional space we understand, and

thus by comparison picture our possible experiences

with space of four dimensions. Picture a being whose
existence is passed in a plane, say a finite two-dimen-

sional figure, a square, for instance. This being would

be shut in by the four lines bounding the square, there

would be no upper side or under side imaginable to

this being, for upper side or under side would imply

thickness which would be a dimension higher than the

plane. Now this being could move in any direction on

its square until a boundary line was encountered, which

would be to it a barrier ; it could picture the other side

of this line, for the other would be simply a continua-

tion of the plane; but to reach the other side without

passing through the line would be incomprehensible,

for it would necessitate movement in the third dimen-

sion, a movement in a direction incomprehensible to the

plane being.

Now, however, a three-dimensional being, able to

move and act in three-dimensional space, a human being,

for instance, could remove the two-dimensional being
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from its square, pass it over a boundary line and back

on its plane outside of the boundary lines of the square.

Thus the two-dimensional being would find itself on

the outside of its barriers without having passed

through any of them, for its movement in the third

dimension would have been unperceived and incom-

prehensible. Now, imagine a being in a cubic three-

dimensional figure, say a box having solid covers on all

of its six sides. There is no conceivable way of getting

out of such a box save by passing through one of the

six sides, yet from the analogy derived from the expe-

rience of the two-dimensional being a fourth-dimen-

sional being could move the being confined in the box
into the fourth dimension, and so out of the box with-

out passing the being through the sides of the box.

This act is no more incomprehensible to the human
three-dimensional being than would be the act of pass-

ing over the boundary line to the two-dimensional

being.

It is obvious that a one-dimensional figure on a line

can, by motion in the second direction, pass off of the

line without passing through the points which begin

and end the line, and we have shown that a two-dimen-

sional figure can, by motion in the third direction, pass

out of a square without passing through the square's

boundary lines; therefore, a three-dimensional figure

could, by motion in the fourth direction, pass out of a

cube without passing through the cube's boundary

planes.

It will be noted that the generation of each of the

three figures of known space is accomplished by one

of three distinct motions, each differing in direction

from the motions preceding, and that by one or a com-

bination of these three motions any point of any con-
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ceivable figure of known space can be reached. Now,
therefore, this fourth movement, that is, the movement
of the cubic figure, in generating the fourth dimensional

figure, is a movement differing essentially in direction

from the movement the plane makes in generating the

cubic figure, just as the line movement in generating the

plane differs essentially in direction from the movement
the point makes in generating the line.

The fourth movement, essential to the generation ot

a fourth dimension from a third-dimensional figure, is

inconceivable to the human three-dimensional being,

just as the third movement essential in generating a

third dimension from a two-dimensional figure would

be inconceivable to a two-dimensional being whose
possible experiences were always limited to a plane.

It is not logical to state that a fourth dimension

cannot exist, for from the analogies derived from the

other three movements, the first that of a moving point

generating a line, the second that of a moving line

generating a plane, and the third that of a moving plane

generating a cubic figure, a clear strong argument is

derived for the possibility of a fourth movement differ-

ing essentially in direction from any of the three pre-

ceding movements or any combination of them, just as

they severally differ essentially from each other. This

fourth movement is the movement necessary to generate

a fourth dimension whose figure is inconceivable to the

finite human mind, but whose boundaries, qualities, and

other attributes can be as definitely described as if the

hypothetical figure could be perceived by the human
senses of vision and touch.
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IX.

THE FOURTH DIMENSION ALGEBRAIC-
ALLY CONSIDERED.

BY "N." (BURTON HOWARD CAMP,

MIDDLETOWN, CONN.)

The concept of the fourth dimension is exclusively a

mathematical one, and, therefore, can hardly be made
intelligible without the introduction of a few mathemat-

ical ideas. The more important aspects of it, however,

I shall endeavor to explain with the use only of the

elements of that algebra and geometry which are

usually taught in high schools.

The reader will recognize the following as types of

equations with which he has dealt, though he may not

recollect clearly all their properties :

x + y =4 (i)

x2 + y
2 =i (2)

2x2 + 3y
2 =i (3)

Here the letters x and y are, in first courses in alge-

bra, commonly called the "unknowns." I do not pro-

pose to inquire what values these unknowns may have,

and, of course, these equations are not supposed to be

true simultaneously ; they are chosen almost at random
as three entirely separate and independent examples to

illustrate the fact that some equations contain two and

only two unknowns. In other equations we may put

three unknowns ; in still others four, or five, or as

many as we like.

x + y + z = 4 (4)

and*3 + y
2 + ~

2 = 1 (5)
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are examples of equations in which the number of

unknowns is three, and they are x, y, and z.

W + x +y +z =4 (6)

and W2 + x2 + y
2 + z2 = i (7)

are equations in which their number is four.

Now, just as illustrations are valuable in making
language vivid, so the mathematician finds that, when
he can form some sort of a picture of his algebraic

work, he realizes more clearly what it means; and it

happens, fortunately, that there are a number of ways
in which he can form pictures of such equations as

these. I shall speak of but one, the simplest and com-

mon method. According to this method, in order to

form pictures of equations in tzvo unknowns, like ( I )

,

(2), and (3), it is necessary to use space of two dimen-

sions—for example, a plane ; the essential thing is that

anywhere in this space it must be possible to conceive

of two lines intersecting at right angles. Some read-

ers will recognize this as the method of rectangular

Cartesian co-ordinates, but it is not important that the

principle be explained in detail, for all we shall need to

know is that it exists. It turns out that the picture we
get for equation (1) is a straight line, drawn, of

course, in some plane; that equation (2) is a circle,

and that equation (3) is an ellipse; there are besides a

host of other curves, corresponding to all conceivable

algebraic equations in two unknowns—spirals, heart-

shaped curves, "figure eights," etc., some of which

have been given names, and some of which have not.

In order to represent equations like (4) and (5),

in which the number of unknowns is three, space of

two dimensions will not suffice; now we shall need to

let three straight lines intersect so that each makes a

right angle with the other two, and that cannot happen
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in space of two dimensions. Three adjacent edges of

a cube, however, are known to be mutually perpen-

dicular, and so the ordinary space of three dimensions

to which we are accustomed will be suitable, and by its

aid we will be able to picture these equations. It

happens that the representations of equations (4) and

(5) will then be surfaces; equation (4) will be a plane

surface, and equation (5) the surface of a sphere; and

here again we may write any number of equations in

three unknowns, and each will be representable by

some surface—perhaps plane, perhaps gently curving,

perhaps full of convolutions so that it folds in and out

upon itself.

When, therefore, an equation contains exactly two

unknowns or exactly three unknowns, it can be repre-

sented thus by some curve drawn in space of two

dimensions, or by a surface in space of three dimen-

sions. But when the number of unknowns is increased

to four, as in equations (6) and (7), the method fails;

for now it requires a kind of space in which may be

drawn four straight lines, all meeting at one point, and

each perpendicular to the other three. It is not possible

to conceive of such a situation, and, therefore, the

mathematician is obliged to do without the representa-

tion he has thus naturally been led to desire. But,

though he cannot have the picture, he can have the

language. Equation (6) looks a good deal like equation

(4), which is a plane, and indeed it has many of the

same properties; so he decides to call (6) also a plane,

but to distinguish it from (4) he calls it a "plane in

four dimensions,"* while (4) is a plane in three dimen-

* These are not suitable terms, for an actual plane or a sphere may be spoken
of as in space of four dimensions. " Hyperplane " and " hyperspace '' are

terms often used.—H. P. M.
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sions. Likewise (7) is to be called a "spherical surface

in four dimensions," while its analogy, (5), is a spher-

ical surface in three dimensions. He does not mean to

imply by such language that it may be possible to con-

ceive of four mutually perpendicular straight lines ; he

does not suggest anything whatever about our ideas of

space, or, to speak more precisely, about our ideas of

motion. He is merely using analogous terms because he

finds them convenient. They possess for him some valu-

able qualities—they are brief and suggestive; and so,

with full knowledge of their limitations, he uses them.

They are brief, because it is generally shorter to give

merely the name of a surface, than it is to describe min-

utely the general class of equations which that surface

represents. It would take us too far afield to show fully

in what ways he finds them suggestive, but a single illus-

tration may be helpful. Suppose he wishes to find out

what relations exist between all equations which, like

(6), he has decided to call planes in space of four

dimensions, and all equations which, like (7), he has

decided to call spherical surfaces in space of four di-

mensions. These are equations in four unknowns ; he

looks back at their analogues in three unknowns, that

is, at equations like (4) and (5), for which he has

really found a geometrical meaning. These are really

representable by the plane and by the spherical surface

;

and so, by thinking of the geometrical relations be-

tween these two figures, he has a clue to what he is to

look for in dealing with the corresponding equations in

four unknowns. Of course, he may not find it, for it

is not true that always the same relations hold for these

different sets of equations, but at least he is on the road

to discovery—if he does not find what he is looking

for, he is liable to find something else.
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From this point of view, then, the fourth dimen-

sion is a convenient phraseology, and only that. It is

customary also to use in like manner the terms, "fifth

dimension," and "sixth dimension," and so on, in

speaking of equations in more than four unknowns;
and when the mathematician thus uses such terms,

when, for example, he speaks of a surface in four-

dimensional space, he is speaking and thinking merely

of some kind of equation in four unknowns.

But there is another point of view from which the

fourth dimension is sometimes considered. Hopeless

as it is for us, who have lived only in three-dimensional

space, to conceive of four straight lines meeting at a

point so that each is perpendicular to the other three,

yet it is quite possible for us to find out what sort of

things would happen if indeed four such straight lines

could exist. To assume, then, that four such straight

lines may exist, and to deduce the logical results of that

assumption is another of the mathematician's problems.

It matters not to him that his assumption asserts an in-

conceivable situation; he is not concerned at all with

the question of its truth, only with its logical conse-

quences.

Of course, such a geometry does not at the

present state of our knowledge have important prac-

tical applications, but at least it is rich in ideas, and

it is by no means certain that its relation to our sur-

roundings is not closer than it appears. For, though

in this sense four-dimensional space, that is, motion in

four different mutually perpendicular directions, is to

us unthinkable, we cannot surely say that it may not

exist. If it does exist, we can know something of those

four-dimensional bodies which may also exist, and a

number of interesting results follow. Suppose, for
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example, we consider some closed two-dimensional

figure, say a circle. We know it is impossible

for a point which always remains in the plane of

the circle to move from that part of the plane which

is inside the circle to that part which is outside, without

passing through the circumference. But, if the point

may make use of motion in a third dimension, and so

get out of the plane for an instant, it may jump over

the circumference, and without touching it at all reach

the outer part of the plane. Likewise, if we try to

think of a point moving from the inside of a sphere to

the outside, without passing through the surface, the

thing is inconceivable to us, and so we say it is impos-

sible; but, if we assume a fourth dimension, then the

point could, so to speak, "jump over" the surface, and

appear again in three-dimensional space outside the

sphere. The same is true of any such closed surface

in three dimensions. If a prisoner could make use of

motion in a fourth dimension, we know he could escape

from the inside of a closed cell without touching the

sides at all.

From these two aspects, then, the mathematician

commonly regards this subject of four dimensions—
one furnishes an abbreviated and suggestive method of

denoting various types of equations in four unknowns,

and the other is the supposition that four mutually

perpendicular straight lines can exist. Neither can

properly be the basis of any physical theory, at least

at present, for the one is only a phrase and the other

is a supposition which is not surely supported by any-

thing that we know of the physical universe. At the

same time, it may be well to remember that there is

nothing self-contradictory in the assertion that each of

four straight lines can be perpendicular to all of the
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other three. Whatever "proofs" have been given that

this is impossible are based (ultimately) upon the intui-

tion that space is three-dimensional. In other words,

the only reason we have for believing that only three

straight lines can be mutually perpendicular is that such

a condition is the only one we have ever experienced.
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X.

DIFFICULTIES IN IMAGINING THE FOURTH
DIMENSION.

BY "A DWELLER IN THREE DIMENSIONS."

(MRS. ELIZABETH BROWN DAVIS, WASHINGTON, D. C.).

We live in space of three dimensions. We call these

three dimensions length, breadth, and thickness. For

example, a line has length, but no breadth or thickness.

A square has length and breadth, but no thickness. A
cube has all three—length, breadth, and thickness. All

the objects which we touch and use have these three

dimensions, no more and no less.

Even when we say that a line has length, but no

breadth or thickness, in reality we have to exercise our

imagination to picture a line absolutely devoid of

breadth or thickness. In practice, if we attempted to

make such an object of only one dimension, which we
could pick up and handle, the nearest approach to it

that we could make would be an extremely fine rod

or wire, but the most finely attenuated wire that could

possibly be manufactured would evidently have some
breadth and some thickness, though they might be

extremely minute.

If we attempt to manufacture a surface having two

dimensions, length and breadth, but no thickness, we
will find it equally impossible. Some of the metals

are capable of being rolled into extremely thin sheets,

but it would not be true to say that they have no thick-

ness at all. We may speak of the surface of a sheet
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of paper, but we cannot separate this surface from
the paper without taking away some of the thickness

with it.

Hence we see that the objects with which we are

surrounded on all sides and which we constantly use.

all have three dimensions. Our own bodies have three

dimensions, and we live in a world of three dimensions.

The notion of three dimensions is one of our inherent

ideas, bequeathed to us by our earliest ancestors.

Hence it is difficult for us to conceive the possibility of

a world in which there are either more or less than

three dimensions.

It is possible, however, to picture in the imagination

a world of two, or even of only one dimension, because

to do so, it is only necessary to take away, in imagina-

tion, from known objects, a portion of themselves, that

is, one or two of their known dimensions, and to

picture their appearance as it would be under those

conditions.

On the other hand, to picture in the imagination a

world of four dimensions, or even one object of four

dimensions, requires that we add to three dimensions

already known, other parts about which we know
nothing whatever. It is obviously much easier to

imagine a known object stripped of some of its known
parts, but whose remaining parts are also known, than

it is to imagine that same known object, with all of

its known parts intact, and increased by other parts

which are entirely unknown, and about which we have

no information to guide us.

Moreover, we have no good reason for supposing that

a world of four dimensions does anywhere exist. But

the question has often been asked, If there are three

dimensions, why are there not four, or five, or even
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more? Why should the number of dimensions be

limited to three? Why should it be limited at all?

To this there is clearly no satisfactory answer.

Because a condition, or a state of affairs, has never

come within our own experience, does not by any

means prove it impossible. There are many things in

the world around us to-day, even in daily use, which

not many years ago we would have declared impossible.

We can readily call to mind several instances of this

fact.

Hence, if we are not prepared to admit that a fourth

dimension is impossible, we must conclude that it may
somewhere, under some circumstances, be a possibility.

When we have reached this conclusion, the mind
eagerly begins to wonder and question what appear-

ance an object of four dimensions would present, and

what would be the conditions of life in a world of

four dimensions. Since we have no information to

guide us, we must look to the imagination for our only

answer, and the imagination is ready to respond, as it

always is when called upon, though in this case it has

extremely meager data.

The best way to approach the solution of this inter-

esting question, is to picture in the imagination beings

of two dimensions, living in a world of two dimensions,

and then to imagine the relation of our world of three

dimensions to theirs. From this we can reason for-

ward, from the known to the unknown, and by analogy,

form some notion of the comparison between our three-

dimensional space and a world of four dimensions.

A world of two dimensions would lie in a single

plane, having length and breadth, but no thickness.

Let us suppose this plane to be horizontal, like the flat

top of a table. All the objects in it would be absolutely
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flat, without any thickness whatever. If such a world

of two dimensions were peopled by intelligent beings,

their bodies also would have two dimensions, length

and breadth, but no thickness. They might have

straight sides, like squares or triangles, or they might

be curved, but whatever their shape, they would be

perfectly flat.

They could glide about the plane in any direction

they pleased, as long as they remained in the plane,

but they could not move out of their plane. Hence
they could not lift 'hemselves up on edge, as we would

stand a card on its edge on the table; nor turn them-

selves over, as we would turn up the face of a card.

They could not move one hair's breadth out of their

plane, for if they did they would at once be in three

dimensions, and we are supposing them to live wholly

in two dimensions.

They not only could not move out of their plane,

but they could see only objects lying in their own
plane. That is, their eyes would be so constructed that

they could see horizontally in every direction in their

own plane, but they could see nothing above their

plane, and nothing below it.

Instead of imagining their plane a small one rest-

ing on the top of a table, we may, if we wish,

imagine it a huge plane out in space, reaching out to

the most distant stars. They might then be able to

see the stars which happened to lie in this extended

plane, but no matter how bright the stars not lying in

their plane might be, those stars would be invisible to

them.

Not only would these creatures be unable to move
themselves out of their two-dimensional world into

the third dimension, and unable to see any object not
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lying in their own plane, but their ideas would be

equally as limited as their powers of locomotion and of

vision. It would be impossible for them to imagine

an object having more than two dimensions, and the

expression "third dimension" would be as unmeaning

to them as the expression "fourth dimension" is to us.

For instance, they might understand perfectly all the

properties of the square, triangle, and circle, but they

would have no conception of a cube, a pyramid, or a

sphere, and if any one attempted to describe such

objects to them it would be impossible to convey the

correct idea to their minds.

Thus we can see how such creatures might live,

throughout the entire history of their race, in a world

of only two dimensions, seeing and understanding only

two dimensions, and yet with three dimensions lying

all about them, extending out to infinity above their

plane, and to infinity below it.

Now, if there is a fourth dimension, it must encom-

pass the three dimensions with which we are familiar,

in very much the same way that three-dimensional

space surrounds the plane of two dimensions.

If we should try to explain to the being who knows
only two dimensions the meaning of the third dimen-

sion, we would probably begin by talking to him about

one dimension, which, of course, he could easily under-

stand. We would point out to him that if a straight

line be drawn in one dimension, and then a second

line drawn at right angles to the first, the two lines

thus drawn would represent two dimensions. This

he would understand perfectly. We would then pass

to the next step, and explain to him that, starting from

that same right angle, if we construct a third line per-

pendicular to both of the original lines at their point
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of intersection, we should then be in space of three

dimensions. He would probably be able to follow the

reasoning readily, but when he tried to form a picture

in his imagination, it would be impossible for him to

see how three lines could be perpendicular to one

another at one and the same time and at the same point.

It would be beyond his utmost power to trace this

third line in space.

Practically, this same difficulty confronts us, when
we try to pass from the notion of three dimensions to

the notion of four dimensions. We know that two
lines at right angles to each other lie in a plane of two

dimensions. And we know that a third line can be

constructed in such a manner that all three lines will

be perpendicular to one another in the same point,

and that the three directions in which these lines

extend will represent the three dimensions of our space.

All this is very familiar to us. Now, if we proceed

one step further, and construct a line meeting these

three lines in their point of intersection, and perpen-

dicular at one and the same time to all three of them,

this fourth line will extend in the direction of the

fourth dimension. We can follow the reasoning to

this point, but when we try to construct the last line,

we are in the same position as the being in two dimen-

sions, who could not imagine what direction the third

perpendicular would take. When we have found out

how to draw four lines, meeting in a point, each cf

which shall be perpendicular to all the other three, we
will have solved the problem of the fourth dimension

;

or at least we will be very warm, as the children say.

The square of any number, a, is written a
2
, and it

may be represented graphically by a flat surface

bounded by four equal straight lines, whose length is a,
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and by four right angles. This requires only two

dimensions.

The cube of the same number is written a
3

, and is

represented graphically by a solid figure of three

dimensions, bounded by six squares, each equal to a
2

.

Its angles are formed by three edges meeting in a point,

each edge being perpendicular to the other two.

Following the same analogy, the fourth power of the

same number is written a
4

. This much we know ; but

its graphic representation we can only imagine, since

it could only be formed in four dimensions.

It seems reasonable to suppose that it would be a

figure bounded by cubes, since the cube was bounded

by squares, and the square by lines ; and that its angles

would be formed by the meeting of four edges, each

perpendicular to the other three.

Let us return for a moment to the consideration of

the world of two dimensions, which we have supposed

to be a plane resting on some flat surface, as a table,

and peopled by flat creatures of two dimensions. It is

obvious that in their eyes the edges of objects would

constitute the exterior of the objects. We know that if

we look down at a card lying on a table, we can see

one entire side of the card. But a flat creature, in the

same plane with the card, would be able to see only the

edges of the card. Even their houses, like everything

else, would be flat like the card, and the walls of these

houses would be their edges. When their doors were

closed, those on the outside would see only the edges or

exterior of their card-like houses. And they could not

comprehend how we, looking down from our three

dimensions, could see the whole interior of these closed

houses, just as they would fail to understand our

ability to view the entire surface of the card. In some
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such manner, it might be possible for a creature in the

fourth dimension to see the interior of our own houses

even when all doors and windows are closed.

If we should purloin an article from one of the two-

dimensional closed houses, and remove it entirely from

their plane, it would become suddenly invisible to them,

and its disappearance would doubtless constitute a

great mystery. In the same way, if there were a

fourth dimension, it might be possible for some object

belonging to us to disappear suddenly and mysteriously

into the fourth dimension.

Although the creatures of our hypothetical two-

dimensional world would be perfectly fiat, they would

possess a right side and a left side, just as a person in a

photograph has a right and a left side. If we should lift

a two-dimensional being from his plane, and replace

him in a position that would be from our point of view

bottom side up, his right and left sides would be

reversed. This may be verified by experimenting with

a face card. Hence we may imagine the possibility of

any object being lifted from three dimensions into the

fourth dimension and replaced in its former position

with its right and left sides reversed.

We are told that there are light rays which are invisi-

ble to us, solely because our eyes are so constructed

as to be unable to perceive them. And we are also

told that there are tones so low or so high that we can

never hear them, because our ears are not attuned to

them. Shakespeare expresses this idea in the Mer-

chant of Venice, when he makes Lorenzo say

:

"There's not the smallest orb, which thou beholdest,

But in his motion like an angel sings.

Such harmony is in immortal souls

;

But, whilst this muddy vesture of decay

Doth grossly close it in, we cannot hear it."



SIMPLY EXPLAINED I33

And hence, whether or not a fourth dimension does

really exist, it might be that causes similar to those

just mentioned, that is, the limitations of some of our

senses, would operate to render us unable to perceive

it. But just as we may enjoy in imagination the

"music of the spheres," though we cannot hear it, so

we may take pleasure in exercising our ingenuity in

picturing the different properties of the fourth dimen-

sion,
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XL

SOME FOURTH-DIMENSION CURIOSITIES.

BY "CREPUSCULA SUBLUCENT" (g. M. ACKLOM, M.A.,

NEW YORK CITY).

Before commencing any explanation of what is

popularly— i. e., physically— meant by a "fourth

dimension/' it is necessary to preface that the expres-

sion is often used in an entirely different—i. e., a math-

ematical—sense, which bears no relation to the con-

ception of an actual universe of four dimensions.

Mathematically speaking, the fourth dimension is

merely a device of demonstrable utility for the solution

of problems in geometry and algebra concerned with

more than three independent variables, and is simply

a convenient expedient of the same character as ^— I,

a n
, or any other quantities impossible of actual con-

ception, which yet, through the allotting to them of

meanings which do not conflict with the laws of real

numbers, we are able to use, and find of great service

in the extension of mathematical operations. For in-

stance, a given particle of gas would require an expres-

sion of four algebraical dimensions if, in addition to its

location in space, its density is to be considered. In

geometry a line possessing one dimension (length) be-

ing moved at right angles to its direction, traces out a

surface, of two dimensions; a surface, moved at right

angles to the directions of both its dimensions, traces

out a solid, of three dimensions ; and could we but find

a direction at right angles to all of the three directions

of these dimensions, a solid moved in this new direc-
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tion would, we must suppose, trace out a figure of four

dimensions. We are not able to visualize such a fig-

ure, but it is a simple matter to predicate some of its

characteristics. For instance, the projection of a cube

may be made on to a plane, or even on to a line ; simi-

larly, a "tesseract" (the name given to the fourth-di-

mension figure traced by the motion of a cube) may be

projected on three-dimension space, or even a plane.

Draw the complete diagram of a cube, edge I inch;

at a distance less than I inch away in any direction

repeat the diagram ; then join all the corresponding

points of the two figures, and the result is the plane

projection of a tesseract. From it may be observed

that, just as a cube is determined by 8 points and 12

lines, and bounded by 6 squares, so the tesseract is

determined by 16 points, 32 lines, 24 squares, and

bounded by 8 cubes.

Three-dimension webs, or projections of four-dimen-

sion figures in space, can with a little more difficulty

be made ; in fact, have been made in Germany by Dr.

V. Schlegel.

Now, in order to gradually attain to the conception

of a physical universe of four dimensions, we may con-

sider that an infinite number of lines— i. e., one-dimen-

sion figures—laid side by side make up a plane, i. e., a

two-dimension figure; and an infinite number of planes

laid one on top of the other form a solid, i. e., a three-

dimension figure, and therefore, by analogy, an infinite

number of three-dimension figures allocated in the

requisite direction (if we only knew how to do it)

would compose a four-dimension figure.

Or, putting the idea in a slightly different form, a

line may be considered as an infinitely thin slice of a

surface, a surface as an infinitely thin slice of a solid,
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and so a solid merely as an infinitely thin slice of an

extra-solid (four-dimension figure). Expanding this

idea to the whole universe, we see that it follows, as a

matter of course, that an infinite number of two-dimen-

sion universes is capable of being contained in our

space, and, similarly, a universe of four dimensions

would of necessity contain an infinite number of uni-

verses such as ours.

If we figure to ourselves the conditions of exist-

ence in a world of two dimensions, and note the rela-

tion such a world would bear to the three-dimension

world in which it might lie, we shall get some instruc-

tive analogies to the relations which would obtain be-

tween our universe and a universe of four dimensions

which may be conceived to enfold it.

For instance, the world of an oyster or that of a

thin, flat non-burrowing worm would be approximately

two dimensions; while, by a reductio ad uliimam of

these approximate conditions, and by supposing the

worm incapable of cognizance or motion up or down-
ward, we may obtain a very fair representation of life

in a mathematical plane.

For the sake of economy in words, it will be well to

call the two-dimension universe we are examining a

plane, the three-dimension universe in which it lies

space, and the supposititious enveloping four-dimen-

sion universe extra-space; and also to designate their

inhabiting organisms by the symbols P, S, and E re-

spectively.

Now, it can be easily seen that for P a line in his

plane forms an insuperable barrier, since he is capable

of no up or down motion, just as a wall of infinite

height would be for S in space.

In the accompanying diagram (Fig. 1), if P wishes
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to move from the position a to the position b, it is obvi-

ous that he will have to move round the end of the

line xy, which, from the nature of the case, he can

neither see over nor across; while the object A inside

the closed quadrilateral rs is as invisible and as in-

accessible to him as it would be to S if contained in a

closed room in space.

Fig. i,

Now, it is also perfectly clear that to S, who may be

imagined to be occupying a position in space immedi-

ately above this plane, the line xy is no barrier, should

he wish to move from the spot a to the spot b along the

plane, which offers a perfectly free and uninterrupted

field for his movement and vision; so that S can, by

picking the object A up out of the plane an infinitely

small distance into space, and putting it clown in
1

the

plane again outside of rs, render it—as by a miracle—-

both visible and accessible to P (at a).
,
Thus, the

whole of P's world lies open and defenseless to the

vision and active interference of S. Nothing can be

so covered or walled up as to be hidden from him ui

out of his reach.

In a precisely analogous manner we may imagine

that E, from the mysterious recesses of his extra-space.
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would be able to act at will on S's world, and to see

everything that S imagined to be hidden. A letter

iocked in a safe in a barricaded cellar is as easily seen

and removed by E as the object A is by S. Anything

whatever in space within E's reach may be made to

disappear instantly by the simple process of E moving
it one-billionth of an inch into extra-space, whence he

could return it to space in some different spot—or not

—at his pleasure; and that without any interference

with the integrity of the box, room, or receptacle in

which the object may have been originally contained,

for E does not have to penetrate it, merely to step into

c e e'

/ 1 \ /
{I / f

Fi<

extra-space from the outside of the room and back

again into space on the inside of the room. Again,

consider two figures, cd and ef, in the plane (Diagram

2) which have their sides and angles equal in every

respect. It is clear that P may convince himself of

their identical equality of sides and angles by measure-

ment, but by no possible amount of turning ef about

can he make it congruent to cd; i. e., capable of being

put in such a position that it can be made to coincide

with cd by superposition.

Yet S can do this (to P) impossible thing, by taking

ef up into space, there turning it over, and replacing
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it in the plane (as e'f )—a figure bearing the same rela-

tion to ef as its own reflection in a mirror.

An exactly analogous process may be performed by
E with a solid belonging to space.

For instance, suppose g and h to be two pyramids,

irregular but exactly symmetrical to each other and
on equal bases, as in Diagram 3. It is obvious that we

ff^
1 &

h

lik= =^\

Fig. 3-

may by measurement and calculation establish their

equality of cubic content; but by no conceivable turn-

ing about of h can we make it fill the same actual space

as g (supposing, of course, that g is removed at the

time).

But nothing would be easier for E than to take up

h into extra-space, there turn it about, and return it to

space. Now it will in every way be not only equal to

g, but exactly congruent to it and able to fit into the

exact portion of space occupied by g. A somewhat
similar action is performed in space when we turn a

right-hand glove inside out, and so make it exactly

congruent to the left-hand one ; whereas, previously, it

was only perfectly symmetrical to it.

From these considerations we deduce that any body

in space which is symmetrical to another can, by be-

ing turned about in the fourth dimension, be made
identically equal to the other, and symmetrical to its

own previous self.
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Once more, imagine S to pass completely through

P's plane, and consider how the process will affect P's

consciousness. Of course, only a section of S can exist

in the plane at a given moment (though it is quite possi-

ble to conceive of every portion of S being in the plane

at one moment or another during the passing) ; conse-

quently, by no possible means can P become aware that

S is anything but a plane. At the same time, there is

little doubt that S's passage would present some inex-

plicable features to the observation of P.

To begin with, unless S happened to be in the

form of a right prism or cylinder, and struck the plane

with its base exactly parallel to the plane, the section

presented to P's observation would vary continually in

size and contour during the passage.

Even such a regular solid as a sphere would appear

as a circle of gradually increasing and then diminishing

circumference, while if we consider an involved solid,

such as a piece of rope with a few knots, coils, and

hitches in it, we can see that P might well be hard put

to it to comprehend that these alternately separated

and conjoined, irregular, and perpetually varying areas

in his plane were parts of a single whole ; let alone the

fact that this whole (could he only know it) is mean-

while in reality not changing its shape at all, merely

its position in space.

The same difficulty will obviously be present to S in

the passage of E or any other fourth dimension body

through space. S can in no possible way become cog-

nizant of more than a section of E at once, and that

section must appear to him as a solid
;
possibly of

varying size, shape, and character, and possibly also

disappearing and reappearing (owing to extra-spatial

convolutions) as several distinct bodies. In any case,
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it will be excessively improbable that S will form any

adequate conception of the shape or nature of E as a

whole, or even be in a position to recognize E at any

future apposition, for his doing so will presuppose

that he has encountered exactly the same infinitesimal

section of E as before, presented at precisely the same
angle in space.

It is not easy at first to conceive of any circumstances

under which a section of a body must be a solid, but a

glimmer of this possibility may be arrived at thus

:

Consider the gradual growth of some fixed body—

a

melon, say—from its birth in the flower to its full

development as a large fruit. Every day we have a

slightly larger and slightly different shaped solid than

we had the day before. Now, taking up a position

alongside the melon, think of time as a fourth dimen-

sion, and visualize in a row the successive shapes which

the melon has assumed since its birth. Thus, looking

back along the direction of time—as it were—we can

mentally become aware of a figure similar to an en-

larged elephant tusk, and made up of a vast number of

slightly varying and gradually increasing melon-shapes

imposed one on the other, and each growing into the

one beside it. This figure, observe, does not exist in

space, for there has never been more than one melon-

shape, as far as our actual senses are concerned, but it

may be conceived to have a very real existence in time

—our supposititious fourth dimension; and, moreover,

it possesses the property of a fourth-dimension figure,

for at any given second, i. e., when a section of the

figure in time is made, the section appears to us as a

solid—a melon. Were we capable of experiencing two
widely separated moments in time and their connecting

moments (all simultaneously), our melon—and indeed
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every other growing thing on earth—might appear to

us in the manner here conceived of.

Again, in thinking of P's world, we have imagined

the plane to be—so far—a rigidly level superficies ; but

it is quite apparent that, since P is incapable of cog-

nizance of any motion or object outside his own world,

this superficies might be curved, in space, without

affecting him or his surroundings, or even interfering

with the correctness of his scientific observations, since

those observations take place exclusively in the super-

ficies
;
just as the curvature of a sheet of paper will not

vitiate the accuracy of a demonstration in plane geom-
etry previously drawn on it. P's world might even be

rolled up on itself, so that two places or beings which

are an enormous distance (measured in the plane)

apart, may be infinitely close to each other when the

measurement is made along what S will see as the

shortest line, i. e., the distance separating them in space.

Applying this conception to space, we can see that

S's world, in a precisely analogous manner, might be

curved, twisted, or even involved, in extra space, with-

out S having any possible means of becoming aware of

the fact.

This, of course, opens up the possibility that two

bodies—say the earth and sun—which are, measured in

space, millions of miles apart, may, if the measurement

were made along the axis of the fourth dimension,

prove to be close together, or actually touching. Some
such explanation as this has, as a matter of fact, been

invoked occasionally to account for various phenomena,

such as the action of various natural forces across

vacua of infinite extent, telepathy, and the like.*

* If our space were thus cnrved certain places might be actually much,
nearer in space of four dimensions than they are in our space, but the differ-

ence would in most cases be very slight.—H. P. M.
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But just as Euclidean plane geometry fails utterly

on an irregularly curved surface where the three angles

of a triangle are not equivalent to two right angles, so

our solid geometry would prove to be fundamentally

incorrect in any portion of space which had such a

curvature in extra-space.

Thus we may see that by extending our ideas of the

possibilities of existence downward to a world of two

dimensions, it is quite possible, if not to obtain actual

information, at least to get glimpses of what relations

the fourth-dimension world would bear to our universe,

supposing it to exist; though it is only fair to say

that just as a mathematically plane world would be

utterly incapable of apprehension by our three-dimen-

sion senses, so a world of four—or more—dimensions,

while not impossible of conception, would be equally

beyond the reach of our present faculties ; so that

worlds of two, four, five, or even n dimensions, may
coexist with space in the universe we are familiar with,

and we all the while be blissfully unconscious of the

fact.
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XII.

CHARACTERISTICS OF THE FOURTH
DIMENSION:

BY "RICHMOND" ( LOUIS W. WORRELL,

WASHINGTON, D. C.)

Consider the following figures

B

A,

A
FIG& f/G.3

The line AB, possessing but a single dimension, can

be moved in a direction not contained within itself, as

to the right, so as to generate a surface; for example,

square ABB XA X . Also the surface ABB 1A 1 possessing

but two dimensions, can be moved in a direction not

contained within itself, as up from the plane of the

paper, so as to generate a solid ; for example, cube

ABB xA x-AoB 2B zA z . Can the cube be moved in a direc-

tion not contained in its three dimensions so as to gen-

erate a new figure whose relation to the cube is analog7

ous to that existing between the cube and its generating

square and also analogous to that existing between the

square and its generating line? If so, the new figure,

called the four-square, contains an additional dimen-

sion. This is the fourth dimension.

As the dimension of length is perpendicular to the

dimension of width ; and as the dimension of height is

at right angles to both length and width, the fourth

dimension must be perpendicular to the other three.
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The above is a full and complete explanation of

what scientists call the fourth dimension.

That the possibilities of space are not exnausted

with the three dimensions of length, breadth, and thick-

ness has no doubt occurred independently to many
minds. However, the present widespread interest in

the fourth dimension may be traced directly to Dr.

Zollner, a German astronomer.

Zollner believed that man is by nature a two-dimen-

sional being ; and that he acquires a full comprehension

of the third dimension by a purely intellectual process

only. The limitations of this article preclude a state-

ment of the process by which he thought that man gains

his consciousness of the third dimension. His work
shows it to be conceivable that there may be beings

who are structurally or intellectually limited to a world

of but two dimensions. If structurally so limited,

either we cannot imagine them, though we may think

about them, or their extent in the third dimension is

so extremely small in comparison with their length and

breadth that it may be disregarded.

A two-dimensional being living in a plane, as the

plane of this paper, might be led to consider the cord,

~Q

Fig. 4.

ab, with the loop or "knot" c lying so close to the

paper that he would be unable to see anything unusual

about it (Fig. 4).* If asked to untie the "knot" he

would move the end b entirely around the center of c,

* See foot-note, page 30.
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whereupon the cord could be pulled straight. If such

a being by an intellectual process arrived at a full

comprehension of the notion of a third dimension, and

attempted to untie the "knot" c, he might ask two
friends to hold the ends a and b respectively. Then,

after having turned a part bd of the cord half way
over through the third dimension into this position

(Fig- 5):

A
Fig. 5.

he could draw the knotted portion of the cord straight.

His companions, seeing him untie the knot thus without

moving the end b, would be completely mystified by the

incomprehensible process. By analogy it seemed plain

to Zollner that some human being, by a purely intel-

lectual process, might arrive at a comprehension of the

fourth dimension so complete as to enable him to untie

knots in a cord such as this in Fig. 6

:

Fig. 6.

without moving its ends, simply by bending some essen-

tial part of the knot through the fourth dimension.

This, Zollner thought, would give a rational expla-

nation of the mystifying rope-untying feats being per-

formed by Slade of England.

Some of the probable characteristics of four-dimen-

sional figures may be determined by analogy. Thus,

the characteristics of the four-square are found as

follows

:

The line has two limiting points, as A and B in the
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figures ; the square has four ; the cube, eight. For the

limiting points, we thus have the series 2, 4, 8. As
16 is evidently the next number in this series, it is

probable that the four-square has 16 limiting points.

The line has a single limiting line ; the square has 4

;

the cube, 12. Here the series is 1, 4, 12. The fourth

term is found by noting the process by which the square

is produced from the line; and the cube, from the

square. In producing the square, the line is to be

counted twice : as AB in its original position, and as

A XB X in its final position. Besides two more lines AA X

and BB t are to be added as being traced out by the

points A and B of the line. Similarly, in producing the

cube from the square, each of the four lines of the

square is to be counted twice : as found in ABB 1A 1 at

the beginning, and then as found in the final position

A 2B 2B ZA Z . Besides four more lines AA,, BB,, B XB ?J

and A XA 3 must be added as being traced respectively

by the four points found in the generating square. The
rule, therefore, is : Multiply the number of lines in

the generating figure by two and add a line for each

point in it. The four-square should, therefore, have

2X12 + 8 lines.

The line has no planes ; the square has 1 ; the cube, 6.

Here we have the series o, 1, 6. By noting how the

cube is generated from the square, it is seen that the

square is to be counted in two planes : as ABB 1A 1 at

the beginning and again as A 2B 2B ZA Z at the end of the

generating motion. Besides, each of the lines of the

square has also traced a plane in the generating process

—the plane ABB 2A 2 being generated, for example, by
the line AB. The rule founded on the above is : Mul-
tiply the number of planes in the generating figure by

2 and add a plane for each line in it. Applying this
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rule to the square as generated by the line, we find the

number of planes to be 2X0+1. The rule thus

holding true in the series as far as we can know with

certainty, we confidently apply it to the four-square

as generated by the cube and find the number of planes

in it to be 2 X 6 + 12.

Noting that a cube is generated by the motion of a

plane, it is thought that the four-square generated by

the cube is limited by 8 cubes—each of the 6 planes

of the generating cube itself generating a cube and there

being the two additional cubes formed by the initial

and the final positions of the generating cube.

To a being limited either by structure or conscious-

ness to a single dimension, any object, such as the

square or the cube, or the four-square, crossing the line

on which he lived, would be a wonderful phenomenon.

Where a moment before there had been nothing, sud-

denly a point would appear ; and, continuing for a time,

it would as suddenly disappear.

Similarly, any object, such as the cube or the four-

square, moving along the third dimension and passing

through the surface on which a two-dimensional being

lived would be to him a marvelous phenomenon.

Where a moment before there had been absolutely

nothing, suddenly a line would appear. Continuing for

a time, it would suddenly and mysteriously disappear.

By analogy, it is reasonable to suppose that when-

ever a four-dimensional object or being comes within

the range of our consciousness, it appears to us as

an ordinary solid of three dimensions. Thus, we
would perceive the four-square as a cube and nothing

else. Likewise, a four-dimensional being moving

steadily in the direction of the fourth dimension might

suddenly appear at our side within a room destitute
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of openings. Continuing his motion, the final limiting

solid of his body would pass beyond our three-dimen-

sional space into the fourth dimension, and he would
disappear as suddenly and as inexplicably as he had

appeared.

It has been suggested that possibly many of the

small objects each of us loses disappear by rolling out

of three-dimensional space into the fourth dimension.

We cannot imagine how beings structurally limited

to a single dimension or to two dimensions only, can

exist. It is true, we can think about them; but only

as being mere abstractions. So far as we know they

have no existence. Analogy, based upon the above,

says that to four-dimensional beings we are likewise

mere abstractions and have no real existence.

If two one-dimensional beings were to meet, they

could never pass each other. A being of more dimen-

sions than one might carry one of them through the

second dimension around his companion^ to the com-

plete mystification of both.

If a two-dimensional being were placed inside a

square, he could never get out without breaking

through one of the sides. A being of more dimensions

than two could, however, lift him through a third

dimension and set him down outside of his square

without his comprehending in the least by what opera-

tion this miraculous result was accomplished.

Similarly, if some of us were locked in an air-tight

room we could never get out until an opening were

made in one of the six bounding surfaces. But,

analogy says that a four-dimensional being might pass

us through the fourth dimension and set us on the

outside of the room without disturbing any of the

bounding walls.
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In a line, nothing can be rotated. In a plane, rota-

tion takes place around a point. In three dimensions,

rotation takes place around a line. In four dimensions,

therefore, rotation takes place around a plane.

If a two-dimensional being were asked to turn m
into coincidence with n in Fig. 7,

Fig- 7.

he would be unable to do so. A three-dimensional

being, however, would simply turn m half-way over,

through the third dimension, about the side I, after

which he could easily slide it over n.

Similarly, considering our hands, we cannot manipu-

late them in any way so as to make them coincide.

But a four-dimensional being, by rotating one hand
half way around about a plane can effect the coinci-

dence easily.

Two one-dimensional beings living on the same line

might know themselves to be miles apart, yet they

might in the twinkling of an eye be placed face to

face if the line were bent into a circle.

Two two-dimensional beings might be miles apart

on the surface common to their existence. Yet it is

conceivable that a three-dimensional being might bend

their surface so as to bring them suddenly together.

Two friends may know themselves to be separated

by half the world. Yet it is possible for a four-dimen-

sional being to bend their space of three dimensions

so as to bring them suddenly into each other's pres-

ence.*

* See foot-note, page 142.
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Relative to the evidences of a fourth dimension, it

may be stated that, as yet, nothing is known which

points with any great degree of certainty to its exist-

ence.

As stated above, it would be possible to rotate the

right hand in the fourth dimension about a plane and

thus reverse it and make it coincide with its com-

panion left hand. And because right-and left-handed-

ness is not found in the mass (that is, in mountains,

clouds, continents, etc.), but only in the minute (such

as is produced in plants and animals and by molecular

action), some believe that evidence of this additional

dimension must be sought in the region of molecular

and cellular activity.

There are two forms of tartaric acid which appear

to be identical in every particular except that one turns

the plane of polarized light to the right while the other

turns it to the left. The right-handed changes into

the left-handed without any apparent decomposition

and without any apparent manifestation of force. If

it can be shown that the change does take place thus,

the phenomenon would be proof that the fourth dimen-

sion does exist.

In a surface there can be only three points which

are equally distant from each other. In space, as we
know it, four points and no more can be so arranged.

In space of four dimensions five points can be thus

placed. Now, in organic chemistry, it has been found

that certain substances have the same formulas. For

example, there are at least eight possible alcohols which

have the formula C 5H 120. The only way that chemists

have of accounting for these different compounds is

by supposing that there is a different grouping of the

carbon, or C-atoms in each compound. If now it
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should become necessary to the explanation of a com-

pound to suppose that five carbon atoms in it are

equally distant from each other, this would be evidence

of a fourth dimension.

Balance, or symmetry in a line can be produced with

reference to a single point only. And, if that point

is selected at random, in the line, the symmetry, or

balance, can be accomplished by carrying a portion of

the longer part of the line through the second dimen-

sion around the point and attaching it to the end of

the shorter part.

Balance, or symmetry, in a surface, can be produced

with reference to a line only. And if that line is

selected at random in a figure in the surface, the

figure may be put into symmetry only by carrying parts

of the longer portions of the figure through the third

dimension around the line and attaching them to the

shorter portions on the other side.

In a similar way we know that there is three-dimen-

sional symmetry, or balance, with reference to a plane.

We see it manifested in the formation of crystals, and

in right- and left-handedness, or bi-symmetry of plants

and animals. Does this not at least indicate the prob-

able existence of a fourth dimension ?

And, finally, Prof. Hinton in developing his me-

chanics of the fourth dimension came to the conclusion

that the mechanics of four-dimensional vortices explain

the electric current—a phenomenon hitherto unex-

plained. He has thus furnished the most direct evi-

dence yet found that space does contain a fourth dimen-

sion.

In the seventh book of the "Republic," Plato im-

agines a group of prisoners chained at the mouth of

a cavern. All movement is impossible to them. Their
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eyes are constrained to look upon the opposite wall

of the cavern forever. Thus, they never see anything

except their own shadows, together with the shadows

of whatever objects may come in contact with them.

In time, they come to refer all their experiences to their

shadows. And, finally, they identify themselves with

their shadows.

By conceiving a possible state in which man is

limited by his consciousness to less than what he really

is, Plato cleared the way for the notion that the normal

man is likewise limited by his consciousness to less than

what he really is. This Greater, which Plato strove to

find, is thought by some to involve the fourth dimen-

sion. *
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XIII.

the: fourth dimension the play-
ground OF MATHEMATICS.

BY "GATH" (ARTHUR R. CRATHORNEJ

CHAMPAIGN, ILL.).

The fourth dimension has been aptly termed the

playground of mathematics. It has certainly called

forth much speculation and a great deal of discussion

which should not be taken too seriously. To under-

stand the term "fourth dimension," it is necessary to

know something of its origin and of the train of

thought which led up to it.

If we mark some point on a straight line or on a

curve, any other point on it is located by giving one

number, its distance from the fixed point. Such a

line or curve is called a one-dimensional body, and

a given number will locate some point on it. A
point may be located on the earth's surface by giving

two numbers, the latitude and the longitude. If the

streets of a city are numbered, any house may be

located by the two numbers which give the house and

street. In general, any point on a plane may be

located by giving the two distances from two inter-

secting reference lines. A similar statement may be

made for a curved surface. We call such a plane or

surface a two-dimensional body, and two numbers will

locate a point on it.

The position of an anchored balloon or the bottom

of a mine shaft is determined by three numbers : the

latitude, longitude, and the vertical distance up or
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down. A point inside a cube may be located by giving

the three distances from the three faces which meet

at one corner. Any point in a solid, or more generally

any point in space, may be located by three numbers,

and conversely any three numbers will locate a point

in space. We say then that space is three-dimensional.

Here an inquiring student asked, "Why stop here?

Are there points which require four numbers for their

representation?" Or the student may be led up to the

question in another way. A one-dimensional body, a

line or curve, may be the boundary of a two-dimen-

sional body. The boundaries of a three-dimensional

body are two-dimensional. "Do three-dimensional

bodies bound anything?" Or again, he noticed that if

b is the length of the side of a square, then b
2
repre-

sents its area, and b
3 the volume of the cube with

edge equal to b. "What does £>
4
represent ? Are there

four-dimensional bodies?"

In trying to imagine a four-dimensional thing, the

student turned back, and tried to see how three dimen-

sions would appear to a person who knew only two

dimensions. He imagined a race of beings endowed
with all the faculties of any rational being except that

they have but two dimensions and live in a two-dimen-

sional region, say a plane. We might think of these

people as the shadows of three-dimensional beings.

In their language there are no such words as "up" or

"down," "high" or "low." They can see nothing lying

outside of the plane in which they live. They can move
in any direction in the plane, but have no conception of

any movement which will carry them out of the plane.

Life in such a region would be under conditions quite

different from life in three-dimensional space. A house

for such beings may be simply a series of rectangles. A
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shadow being is just as safe from observation behind

a line as a three-dimensional being behind a wall. A
bank safe might consist of simply a circle. It would
have to be very large, however, for there is no piling

up of money in this country. If we imagine a piece

of two-dimensional rope, we will see that it is impossi-

ble for the shadow beings to tie the two ends together

in a knot, even if they had the slightest notion of a

knot.

If a schoolboy in shadow land wished to prove that

the corresponding angles of the two triangles in Fig. 1

are equal because the corresponding sides are equal, he

would perhaps show that each triangle could be moved

Fig. 1.

over until the vertices occupied the positions A"B"C"

.

He could not place one triangle on the other, for he has

no conception of such a thing. If the triangles were

as shown in Fig. 2, the schoolboy could not use the

sliding method of proof, for no amount of sliding could

make the points ABC coincide with A"B"C" . He
might, however, conceive of the sides AB and BC to

be made of some flexible cord, and the point B pushed
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along the line BB' until the cord again became taut,

and then the triangle AB'C could be pushed into the

position A"B"C"

.

In working with this problem, he might have imag-

ined two one-dimensional objects in a one-dimensional

region with the fixed points ABC, and A'B'C, respec-

a b c o c b 1 a"

Fig- 3-

tively. These objects may be moved in a straight line,

but not out of it. In trying to make the points A'B'C'
coincide with ABC, he would find it impossible to do

so by sliding along the line, but a rotation about o in the

second dimension would bring them together. By
analogy he might think that if he could turn his triangle

over in the third dimension about AC, he could solve

his problem. But he has no conception of such a

motion, though he might call his work with the triangle

made of flexible cord a revolution in the' third dimen-

sion.

By a miracle one of these shadow beings becomes

endowed with a knowledge of three dimensions. He
does marvelous things in the eyes of his neighbors.

He can disappear and reappear at will. The strongest

prison cannot hold him. If he moves out of the plane

in which he has lived he can look down into the houses,

even into the insides of his neighbors. If, before

returning to shadow land, he should turn himself over,

he would be a sort of reflection of his former self to

his friends. His heart would be on the right side

instead of the left. To his friends he would be left-

handed instead of right-handed.
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After amusing himself with his two-dimensional

people, the student returned to his inquiry as to four

dimensions. By analogy he supposed our space of

three dimensions to lie in the midst of a space of four

dimensions, just as his shadow land lay in the midst

of three-dimensional space. He might speak of all

people and objects as three-dimensional shadows of

four-dimensional things. If now by supernatural

means a person becomes endowed with four-dimen-

sional knowledge, he can perform the same kind of

antics that his two-dimensional analogue did in shadow
land. No prison could hold him. He could take money
from a sealed box without making an opening. He
could disappear and reappear at will.

In three dimensions we have similar solids which

cannot be made to occupy the same space ; for example,

the right and the left hand. By analogy with the

schoolboy's triangle problem, the student conceived

of one of such a pair of objects being carried into the

fourth dimension turned over and brought back. The
two objects can now be made to occupy the same place.

Turning a right-hand glove inside out to make it fit

the left hand would have the same effect as turning

it over in the fourth dimension.*

Since the inhabitants of shadow land have no sense

of "up" or "down," they cannot perceive in any way
the plane upon which they move but which is present

at every point. The imaginative student might then

say that the ether which physicists claim to permeate

our whole space is but the three-dimensional analogue

to the plane of shadow land. So he could go on indefi-

nitely with his analogies, but we must not forget that it

is all the product of his imagination, and that there

* See Introduction, page 2S.
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is no more probability of the existence of his four-

dimensional beings than of his two-dimensional ones.

While this student was amusing himself with his

two- and four-dimensional beings, another student, an
investigator in the realm of pure mathematics, had
found that the ideas and the language of four dimen-
sions were exceedingly useful. By drawing two per-

pendicular lines as in Fig. 4, he was able to locate every
point in their plane, by giving the distances from each
of the two lines. Like the schoolboy who begins his

problem, "Let x equal the

number of men," the investi-

gator lets x represent the

distance of the point from
the vertical line and y the

distance from the horizontal

line. He then, for the time

being, concentrates his at-

tention on the letters x and Fig . 4 ,

y, just as the schoolboy

manipulates the x in his problem, without at all times

keeping in mind that x means men. It is an easy

extension by means of three infinite planes to represent

any point in space by three numbers, x, y, and z.

Again, the investigator, after letting these letters repre-

sent the point he is considering, deals only with the

letters, and at times pays little attention to what they

represent. But there are other things besides points

which may be represented by numbers. He may wish

to discuss spheres in space. Four numbers are needed

to locate a sphere in space, three to locate the center

and one to represent the radius. Again, if he wishes to

locate a line of given length, he will use three numbers
to locate one end of the line; and since the other end
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can then move on a sphere, he will need two more
numbers, or five in all, to represent the line. In any

problem he assigns a letter to represent each of his

unknown numbers, whether the number helps to give

position or not. These letters he uses impartially in

his algebraic manipulations. He has called all the

points in the plane a ''two-dimensional aggregate," for

any point is represented by two numbers. The points

in space make up a three-dimensional aggregate. The
totality of spheres and of straight lines of given length

make up four- and five-dimensional aggregates respec-

tively.

These two students are types of the two classes of

investigators who have studied the subject of dimen-

sions. The first delights in placing before us those

creatures of his imagination, those two and four-dimen-

sional people with their imaginary environment. Just

as the dramatist delights in presenting to us a hero

who acts, under the conditions laid down in the story,

in a manner consistent with his character as presented

by the author, so this writer takes pleasure in bringing

before our minds his creatures, whose sole character-

istics are lack or oversupply of dimensions.

The second investigator is the mathematician who
found it a real help in his investigations to use the

ideas and language of four or more dimensions. He
did not say that a four- or five-dimensional material

world existed. He did not believe that our universe

was part of an actual four-dimensional space, nor did

he ask others to believe it. It was but another example

of the mathematician's delight in generalization. In

this way he introduced the idea of negative numbers to

enrich his language and to give him more power of

expression. He never asked us to believe in the exist-
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ence of a negative number of objects. The chemist is

permitted to base his investigations on the atomic

theory without knowing or caring much whether such

a thing as an atom exists or not. The physicist may
talk of the flow of heat in a rod without believing that

heat is a substance or that it flows. The mathematician

asked to be allowed to extend his notion of space, and to

include in it aggregates of more than three dimensions,

even if this lead to physical absurdities.

The ideas and phraseology, as exhibited in the writ-

ings of investigators in the subject of dimensions, were

immediately seized by the romance writers, the presti-

digitators, and a certain class of spiritualists. To the

first it gave a new method for the disappearance and

reappearance of the hero or the villain. As a rule, he

returns as a reflection of his former self, having become

turned over in the fourth dimension. To the second

class it gave a new set of catchwords and phrases for

use in sleight-of-hand performances. To the third

class, led by Professor Zollner of Leipsic, the fourth

dimension became the abode of the spirit world. For

them it solved a great problem, and many are their

arguments to prove their contentions. The Bible is

brought in to testify, and an extra dimension is read

into the meaning of such verses as, "May be able to

comprehend with all saints, what is the breadth and

length and depth and height." (Ephesians iii, 18.)

They boldly stated that physical space lies in a four-

dimensional space, just as a line lies in a plane, or a

plane lies in three-dimensional space. Just why one

should stop at four dimensions is not made clear.

In a brief way we have then shown how the term

"fourth dimension" arose. We have shown how the

efforts of mankind to tear himself away from the
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numbers i, 2, and 3 and to generalize have given rise

to two classes of literature, one purely imaginative

fiction for the general reader, and one mathematical for

the mathematician. From these writings words and

phrases have been torn from their settings and used

in a way never thought of by their authors, and from
this perversion of terms has arisen a discussion which

has connected the word "dimensions" with mysticism

and the occult.

This, then, is the explanation of the term "fourth

dimension." But the persistent reader will perhaps

repeat the question, "Is there a fourth dimension?" If

by this question he means, "Does a fourth-dimensional

world exist physically?" all we can say is that it is

highly improbable. Continued thought and discussion

on this phase of the question will only result in the

state of mind of the Persian poet when he said,

" Myself when young did eagerly frequent

Doctor and saint, and heard great argument

About it and about ; but ever more
Came out by the same door where in I went."

If a physical fourth dimension exists a three-dimen-

sional being would never know it, nor would he have

any way of finding out. The same statement may be

made of two or of five dimensions. As a mental con-

ception, the fourth dimension exists, but the world of

our physical experience includes only the three-dimen-

sional.



SIMPLY EXPLAINED 1 63

XIV.

THE TRUE AND FALSE: IN THE THEORY
OF FOUR DIMENSIONS.

BY "PERGE DECET" ( PERCY WILCOX GUMAER,
URBANA, ILL.)

Oftentimes, a theory that is advanced in good faith

by some distinguished authority falls into disrepute,

because it is appropriated by less intelligent persons

and is modified or extended to suit some non-related

hypothesis of their own. To mutilations of this char-

acter the theory of four dimensions has become a sad

victim.

The idea originated as a pure mathematical concept,

capable of symbolic representation, but quite incapable

of being visualized. This may be illustrated by a simi-

lar concept found in the use of negative numbers. The
individual who subtracts 7 from 3 and gets negative 4
has a mathematical conception of its meaning. He does

not, however, infer the actual existence of a negative

number of objects. It is easy to conceive that when
four trees in a garden are cut down there are four of

them missing, yet no person can picture to himself

minus four trees, because the mind can visualize only

such quantities as result from actual counting. This

lack of material existence, however, does not deter

anyone from using negative numbers as a short cut

in his calculations. In a similar way, the idea of four

dimensions may be used in mathematical calculations

and without any implication as to the existence of such

a space.

Mathematical reasoning has taught us many of the
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peculiar properties of this much-discussed space. These

properties were appropriated by Zollner and others as

explanations of the phenomena of spiritualism. These

persons said that spirits live in a space of four dimen-

sions, and that we human beings who are confined to

three dimensions are not sensible of their existence ex-

cept as they choose to enter our limited space. These

statements they have attempted to prove by means of

the geometric properties of a four-dimensional space.

In this wise, the unwarranted extension of a mathe-

matical concept has given the lay reader a much per-

verted idea of the fourth dimension, and it is the

purpose of this article briefly to distinguish between the

theory as rightfully advanced by mathematicians and

the popular conception of the theory after it has been

altered to suit the hypothesis of the spiritualists.

In all branches of study or enterprise the mind is

greatly aided by concrete representation. Drawings
or photographs are indispensable accessories in many
branches of industry. No contractor would attempt to

erect a building without first securing the drawings for

it. So, too, in mathematics, the possibility of drawing

a picture of an algebraic equation greatly simplifies its

understanding.

Prior to the time of Descartes, the sciences of algebra

and of geometry were treated as unrelated subjects.

Descartes, however, discovered that algebraic equations

of two or of three unknown quantities may be con-

veniently represented by geometric figures. The me-

thod of so representing an algebraic equation can be

best illustrated by a simple example. We know from

elementary algebra that in an equation of two unknown
quantities, such as y = x2— 2x -f 2, we may assign

to x any value that we please. Furthermore, by solving
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the equation we can determine for each value that we
assign to x, 3. corresponding value of y ; for instance,

if x= i, we find that 3;= 1 ; if x= 2, y = 2 ; x= 3,

3'= 5; x= 4, y=io; *.= 5, 37= 17, etc. To in-

terpret these results by a diagram, we draw two

straight lines meeting at right angles. These lines

we call the axes of reference. Along one axis we
measure from the intersection distances equal to the

C'o

bo

ab cd e X
Fig. 1. Fig. 2.

various values assigned to x, as shown by the points

abcde in Fig. 1. From these points we measure

in a direction parallel to the F-axis distances aa bb'

cc dd' ee
'

, equal respectively to the values that were

determined for 3; by the different numbers substituted

for x. The points a'b'c'd'e', etc., are said to be points

on the curve of the equation. It is evident that by

assuming the successive values of x near enough to-

gether we can find an indefinite number of points be-

tween those already plotted. Fig. 2 shows the curve
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of the equation, y = x2 — 2.x + 2, as plotted for values

of x from o to 5.

This concrete representation of an equation may give

to the reader but little further information concerning

the equation, and the working drawing of any object

may be to the layman nothing but a confused mass of

lines, yet the drawing conveys to the draughtsman or

to the mechanic a very exact conception of the object.

So, too, the graph or curve of an equation conveys to

the mathematician a concise idea of the properties of

the equation.

Sometimes the engineer or the mathematician desires

to plot an algebraic equation containing three variables,

such as x + y + z= 10. Proceeding as before, it is

possible to obtain values of z for particular values of

x and y. The values of z, however, cannot be repre-

sented on the same plane with x and y, for it is neces-

sary to have a third, a £-axis, along which to measure

the values of z, and this axis must be perpendicular to

the other two at their intersection. Having assumed

a £-axis, we proceed to plot the equation of the three

variables in the same manner that equations of two

variables were plotted. Particular values for x and y
are assumed and the equation is solved for z. The
values thus obtained for each of the variables are then

laid off in the direction of their respective axes.

This concrete representation of equations of two
and three variables aided the mind so well in the solu-

tion of difficult problems that mathematicians sug-

gested that this interpretation be extended to include

equations of four variables such as are sometimes

found in problems of electricity and of physics. Kn
equation, such as, x + y + z + w =16, to be plotted,

requires a fourth, a ^F-axis, along which to measure
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the values of w. Such an axis must be constructed

perpendicular to the X, the Y, and the Z axes at their

intersection. Here the mathematicians, as the popular

saying goes, found themselves up against it, for they

could not draw four straight lines mutually perpen-

dicular at a point. This limitation of our space pre-

vented the geometric representation of equations of

four variables, but it did not deter further study of the

equations.

Men are continually calculating what would happen

if conditions were different from what they are. The
student of history seeks to determine the effect on

history, if Napoleon had won the battle of Waterloo;

the physicist calculates the probable amount of heat

that would be generated if the earth were suddenly

stopped in its orbit ; so, too, the mathematician, unable

to construct four mutually perpendicular lines, spends

valuable time in determining what would happen if

it were possible to construct his perpendiculars. This

leads him to the concept of four-dimensional space.

Here the reader is apt to become confused. The
layman, on being told that in a four-dimensional space

four straight lines can be constructed mutually perpen-

dicular, immediately seeks to visualize to himself these

four perpendiculars. Of course, all such attempts to

picture these lines seem futile, and the whole discussion

is, forthwith, pronounced a humbug. This, however,

is not a fair verdict, because the layman does not us-

ually get the true meaning of the mathematician. It

is not meant that these four lines should be actually

constructed. That, as far as we are able to know, is

impossible. It is perfectly legitimate, however, to cal-

culate what would happen if this were possible, and

that is all the mathematician attempts to do.
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Physical possibility and mathematical possibility are

not always identical. A valid mathematical statement

may often be quite incapable of physical interpreta-

tion, as will be shown by a reference to Euclid's

eleventh axiom. A statement is possible mathemati-

cally if it is self-consistent, and if it does not con-

tradict other assumptions in the same discussion.

Euclid, the father of geometry, states in his eleventh

axiom that through a given point only one straight

line can be drawn parallel to another straight line.

Proceeding on the assumption that his axiom was
true, he built up a system of geometry. In the early

part of the 19th century, Lobachevsky, who did not

accept Euclid's axiom as true, because it could not be

proved, said, let us assume that it is not true. Suppose

that through a given point more than one straight line

can be drawn parallel to another straight line. He then

proceeded by purely mathematical reasoning to build

up an entire geometry based on his new axiom. In

itself, this geometry is perfectly self-consistent, and it

is mathematically possible. Strange as it may seem,

we are unable to prove absolutely which system is the

true one. Euclidean geometry, however, is simpler,

is more convenient, and has been found to hold true

even in the most delicate measurements that are pos-

sible. Men will continue to use it in their measurements

and calculations, because so far as we are able to judge

from empirical knowledge, Euclidean geometry is the

true one.

So far as our experience goes, all space is three-

dimensional, but the statement cannot be proved abso-

lutely. It must be accepted as an axiom. If some

Lobachevsky should challenge us for a proof of this

axiom, we could give him but little satisfaction. He
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might then go ahead, and assume that space had four

dimensions. He could proceed by deductive reasoning

to build an entire geometry based on the assumption

that this new axiom were true. He might derive

formulae for the area of triangles, for the volume of

solids, or for the direction of a tangent to a curve.

This space of four dimensions would be mathematic-

ally possible, for all the propositions and deductions

concerning it, would be self-consistent and not con-

tradictory within themselves, yet no amount of such

reasoning will prove the actual existence of such a

space, any more than Lobachevsky proved that any

person can really draw through one point two straight

lines parallel to a third.

It is possible in dealing with equations of two varia-

bles to determine, without plotting them, many of the

properties of the curves which they represent. By
various manipulations of an algebraic equation, higher

mathematics enables us to get the length of any portion

of the curve, the direction of a tangent to the curve at

any point, or the points of intersection of two curves.

The method of studying the properties of a four-dimen-

sional space is very similar to that just described for

two and for three dimensions. We know that an

equation of four variables represents some sort of a

configuration in a space of four dimensions, so that

by applying the principles of analytic geometry and

calculus to the equation it is possible to determine the

properties of the particular figure, solid, or body that

the equation represents. It is not at all necessary to

be able actually to construct these four-dimensional

bodies in order to study their properties. As we de-

termined the properties of curves and surfaces by study-

ing their equations, so we may determine by the same



170 THE FOURTH DIMENSION

process properties of configurations that are represented

by equations of four variables.

Some of the propositions of a four-dimensional

geometry are extremely unique and almost incompre-

hensible. For instance, a hollow flexible sphere in a

space of four dimensions could be turned inside out

without tearing or stretching.* If any object were

capable of moving into a space of four dimensions,

it could not be confined by the four walls of a

room, and, as soon as it had moved the smallest part

of a distance in the unknown direction, it would become

invisible. In a space of four dimensions it is possible

to revolve an object about a plane, though in three

dimensions it is possible to revolve bodies only about

straight lines or points.

A study of the strange properties of this hypo-

thetical space, though interesting, is quite beyond the

scope of this paper. A geometric proof would require a

knowledge of very advanced mathematics, and the

wonderful feats that might be accomplished by anyone

possessing the secret of a fourth dimension have been

well portrayed in several popular articles on the subject.

Is the existence of a four-dimensional space really

impossible? is the question most frequently asked. If

existence means that the intellectual idea of a thing

can be formed, and that this idea shall not lead to

contradictions with other well established ideas and

with the results of our experience, then it may be said

that four-dimensional space does exist. If, on the

other hand, existence is taken to mean objective or

actual reality, all that we can say about it is that we do

not know.

* For a mathematical proof of this statement see Journal of Mathematics,

vol. i, p. 1.
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All knowledge proceeds originally from experience,

but the amount and the degree of perception possible

for our senses is limited. There are many phenomena
that are not evident to our senses, and which are known
only in an indirect way. We know that there are light

waves below the red and above the violet end of the

spectrum, which are invisible to the eye. Usually, the

non-observation of a phenomena is taken as strong

evidence of its non-occurrence. For instance, there

was a time when it would have been a reasonable induc-

tion to say that all plants and vegetables are motion-

less, and that animals alone are endowed with the

power of locomotion. The perfection of the micro-

scope has, however, shown us that minute plants are

as active as minute animals. Hence we cannot always

assert that because we do not observe a phenomenon
that it does not exist. If we insisted that everything

were just as it appeared to be from our observation, we
should be in the position of a child who believes that

all people have enough to eat, and that all children

have nurse-maids. The child reasons from uncontra-

dicted experience, and so do we, usually.

Although we cannot dogmatically deny the existence

of a four-dimensional space, even though such a space

is inconceivable and impossible for us to imagine, yet

we can say with confidence that our universe, as we
know it, and every known agency in it, is confined by

some unknown law to a space of three dimensions.
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XV.

THE ASCENDING SERIES OF DIMENSIONS.

BY "I)" (W. S. DAVIDSON, PITTSBURG, PA.).

In setting out to investigate the possibility of a

dimension above our present conceptions, we neces-

sarily proceed along the lines of analogy. From com-

parative investigations in existences of one, two, and

three dimensions we will deduce parallel results to

enable us to establish formulas by which may be derived

an abstract conception of some of the elementary prop-

erties of a body in four-dimensional space. To be con-

sistent, we must proceed with the same care with which

an astronomer would try to people a remote planet.

While considering conditions which make life possible

in his own sphere, he would make specific modifications

in order to bring it into complete harmony with the

new environments.

Although the practical representations of lines and

points have appreciable size in all directions, we should

not forget that in our discussion these are abstract

terms, the latter having only position, and the former,

merely a distance between any two positions. In like

manner, a surface is imaginary, independent in space,

or forming a terminating plane of a body. It is devoid

of thickness to such an extent that were an infinite

number to be placed one upon the other the aggregate

would still have no thickness.

We will consider, first, the limitations in the percep-

tions of beings in a world of one dimension, that is.
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existence in an infinite path through space, some por-

tion of which may be represented by the line AB (Fig.

1). We will suppose that at various points in this

path, separated from each other, creatures a, b, and c

are in progress, a representing a point, b a creature

having length, and c a creature similar to b but longer.

This variety of form is apparent to us because our

experience is gained through observing these objects

from without the plane of their existence. To the

creature a, however, b is merely a point like itself, and

to b, c is also a point. This arises from the fact that,

Fig. 1.

having knowledge only of distance and location in their

own path, anything requiring a realization of a third

quality would be lost to them. Creature a observing b

in the figure would see him as a point, because he sees

only the end of b. Suppose the bodies, a, b, and c con-

tinued in their relative positions to one another through-

out their entire existence, each would then, through his

restricted knowledge of the other, be forced to different

conclusions regarding the form of life outside his

own. Now a, conscious of his own existence as a

point and observing b as a point, would erroneously,

though logically, conclude that all life existed in point

bodies. Creature b, upon seeing a and c as points, and

being conscious of his own length, would at once
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conclude that he was especially favored by the Creator

above his fellow-beings, apart from the ordinary course

of nature.

In Fig. i, we employed any line, or path in space, but

to avoid complications in succeeding diagrams, we
shall adopt the straight line. A terminated line may be

considered as a path of a point in space, bounded by its

initial and final positions. The terminated straight

line is the particular case where the point moves from
one position to another by the shortest route AB (Fig.

2 ) . If we move AB through the shortest path to the

B

Fig. 2. Fig. 3,

final location A'B' , we obtain a plane figure ; and if AB
be moved in this manner, a total distance equal to its

length (Fig. 3), the result will be the definite plane

figure known as a square. Hence the square may be

called the elementary figure in the two-dimensional

world, just as we consider a terminated straight line

the elementary figure in the one-dimensional world.

In passing from the lineal to the areal existence, we
find that we have greatly multiplied the number of

possible varieties in shapes. Thus, our two-dimen-

sional world may have not only creatures represented

by points and lines, but also by numerous hetero-

geneous forms, including many familiar ones, such as
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the square, rectangle, triangle, and circle. Here, as in

the former case (Fig. i), only by careful demonstra-

tion, such as the superimposing of various bodies for

purposes of comparison, could these creatures get even

an intimation of the endless variety of forms about

them, or establish to any definite degree their relation-

ships. An idea of the limited variety of forms that

present themselves to the casual observer in such a

two-dimensional world, may be gained by us if we
cut various-shaped objects from paper and look at

them edgewise. A long, narrow strip will appear as

Fig. 4.

a point or a line, according as the spectator views it

from the end or from the side ; while the square, circle,

triangle, and rectangle will appear merely as lines of

various lengths. It would be only fair, however, to

endow at least a few of these creatures with minds

sufficiently mathematical to establish a few simple

relationships. Suppose them to be confronted with the

problem of proving the entire equality, by the Euclidean

method, of the triangles ABC and abc (Fig. 4), when
it is granted that the side AB is equal to the side ab,

AC is equal to ac, and the angle CAB is equal to the

angle cab. The mechanical operation here is within

their possibilities.
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Let us now place the same figures in the positions

shown in Fig. 5. Given the same hypothesis, it might

appear at first glace that this case is sinfilar to Fig. 4,

but a closer examination shows that Fig. 5 involves the

Fig- 5-

simple preliminary operation of reversing one of the

triangles before it can be superimposed upon the other.

It is evident that this "turning-over" process requires

a knowledge of three dimensions, and, therefore, to

creatures with a compre-

hension of only length

and breadth, the possibility

of an Euclidean proof

would be inconceivable.

We will now suppose our

two-dimensional world
pierced by a line LN (Fig.

6), and imagine it to con-

sist of such material that

the line may be moved
about at will without necessitating its withdrawal from
or tearing the plane. It is evident that the only portion

of this line which could be detected by these creatures

would be the point P—a form of creature with which

we have supposed them familiar—freely moving about
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and apparently limited to the two-dimensional exist-

ence, while in reality requiring three-dimensional space

for its accommodation.

We now come to the consideration of objects with

which we are familiar, namely, those in three-dimen-

sional space. All forms of matter manifest to our

senses require space for their accommodation, having

length, breadth, and height. The plane, line, and

point exist in theory only to aid man in the present

crude state of his mental development to build up im-

perfect images in conformity with forms as he senses

them in the material world. As universal laws are the

media through which nature works, she builds accord-

ing to conditions and environments and inscrutable

laws of economy. In nature, the straight line and the

plane surface are the exceptions, appearing most fre-

quently among the lower forms of plant and animal

life, but man, ignorant of the finer considerations which

shape the course of nature, and continually prone to

error, must accomplish his results by the simplest, most

direct methods within his comprehension. In doing

this he has adopted as the standard of length a straight

line; the unit of area, a plane figure known as the

square; and the unit of volume, a six-sided figure

called the cube. We have already seen how the plane

may be derived from the straight line, by the same
method we shall construct the elementary figure of

three-dimensional space. Referring to Fig. 3, let us

imagine the square AA'B'B moved at right angles to

its surface, a distance equal to one of its sides. In doing

this we have generated a figure (Fig. 7) which is

three-dimensional.

Suppose that in selecting the straight line AB, from
which our figures have been constructed, we had
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chosen one two inches long, then the elementary geo-

metrical figures would have a corresponding mathe-

matical representation, thus : the line= 2 ; the square

= 2
2

; the cube= 2 3
. Now since we have also such

expressions as 2
4

, 2
5

, etc., for which we have found no
geometrical solution, the question naturally arises

Fig. 7.

whether there does not exist, beyond the limits of man's

present knowledge, a higher order of beings for the

comprehension of whom we, as three-dimensional be-

ings, would require additional perceptive powers.

With our present mental limitations, however, it would

be impossible even to attempt to define an object which

would require four-dimensional space for its accommo-
dation, but by analogy we can deduce a few interesting

facts regarding a figure which would apparently occupy

the same position in the new world that the cube holds

in our own.

We have seen that ( 1 ) points form the terminations

of a straight line, (2) straight lines terminate, or

bound, the square, and (3) squares form the bounding
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surfaces of the cube. Thus we have established that

the elementary figure of each existence is contained

within figures having one dimension less than itself.

We, therefore, conclude that our four-square figure

would be terminated by cubes. In deriving the square

from the line, we move along the shortest path from the

initial to the final positions, these being separated from

each other a distance equal to the line itself. Similarly,

the cube was generated by moving the square through

space until it occupied a final position at a distance

equal to one of its sides from its initial position. In

both cases the motion took place in a direction at right

angles to each and all of the boundaries of the generat-

ing figure. We, therefore, conclude that our four-

square figure might be generated by the displacement

of the cube, a distance equal to one of its sides, and in

a direction at right angles to all of its containing sides.

What this direction would be is as foreign to our under-

standing as a conception of height would prove to

creatures in a two-dimensional world.

In the movement of the line to form the square the

number of boundaries obtained for the new figure was
twice the original, plus two lines generated by the

terminating points of the line. In like manner the con-

taining sides of the cube were formed by the first and

last positions of the square plus four squares created

by the four containing lines. From these considera-

tions it would appear that the four-square would have

as its boundaries the initial and final positions of the

cube plus six cubes formed by the displacement of the

surfaces of the original figure, or a total of eight cubes.

Again referring to our square and cube, we see that

the number of points or corners in the constructed

figure is twice the number of points (or corners) in the
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generating figure. Thus, the line with two limiting

points gives the square four corners; the cube has

eight corners and the four-square, on this basis, would
have sixteen. The number of lines or edges connecting

the corner points is as .follows : in the square, twice the

original line plus two lines traced by its ends; in the

cube, four lines for each position of the square plus

four lines described by its four corners. The number
of edges of a figure then is seen to be twice the number
of lines or edges in the generating figure plus an edge

formed by each one of its corners. Therefore, our four-

square would give edges as follows : 12 X 2 + 8 = 32.

To sum up, our four-square would have eight containing

cubes, sixteen corners and thirty-two edges ; and if our

generating cube measured two inches on an edge the

content of this new figure would be represented by 2
4

.

Curious as the above geometrical deductions may
appear, they are surpassed by the dramatic results that

would accompany a conception of the fourth dimension.

To a creature with a knowledge of mere length and

breadth, our physical representation of lines on a plane

surface would prove as impassable a barrier as a stone

wall unlimited in height would to us. Now, it is

evident that we, as three-dimensional beings, may touch

all portions of a plane figure (Fig. 3) without disturb-

ing any of the containing lines. If, then, a number of

two-dimensional creatures were placed in such an enclo-

sure, imagine their surprise at finding that there existed

an order of beings capable of penetrating matter, as

they know it, without in any way disturbing it! A
parallel case may be imagined in our own existence,

if we suppose a being A of the three-dimensional order

shut in a hermetically sealed armor-plate vault and

suddenly confronted by a being, B, having a knowledge

of the fourth dimension.
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It might seem possible from these considerations

that, with such an advanced state of knowledge, we
would be able to extract the pulp from fruit and the

kernel from the nut without first removing the outer

covering. Likewise, windows for the admission of

light, or doors for communication with the outside

world, would no longer be necessary, for the fourth

dimension would destroy the present effectiveness of

the barrier formed by the six sides of a room.

It will be many centuries, if ever, before man can

prove the probability of a dimension above the third;

but, as we have shown in connection with Fig. 6, we
are scarcely justified in denying such an advanced state

merely because all matter can apparently be shown to

occupy three-dimensional space.

The development of our perceptive senses proceeds

very slowly and, according to the theory of evolution,

depends upon the extent of the use of existing facul-

ties. We may be justified, therefore, in presuming

that we are infinitely nearer to a realization of the

four-dimensional existence, if such exists, than we
are to the first dawn of reason.

We may consider this ideal state of mental develop-

ment a possibility if we believe that, in the various

stages of his progress, man carries over to each suc-

ceeding state a balance of inherent possibilities, which,

in the new existence, prove the active influences deter-

mining the mental status of the next.

In view of this it might seem possible that that

quality of the mind, subconsciousness, is in reality but

a subtle force at work evolving greater possibilities in

the acquirement of knowledge by the multiplication of

the perceptive senses.
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XVI.

THE MIND'S EYE AND THE FOURTH
DIMENSION.

BY "rAJARAM" (CHARLES JOHNSTON,

NEW YORK, N. Y.)

A straight line has length, but neither breadth nor

height. It is a figure of one dimension or direction.

A flat or plane surface has length and breadth, but

not height. It is a figure of two dimensions or direc-

tions.

A solid body, like a cube, has length, breadth and

height. It is a figure of three dimensions or directions.

Line, surface, solid, represent one, two, three dimen-

Fig. i, Fig.

D

sions. If we could take an additional step, we should

have a fourth' dimension.

In what direction should we look for the fourth

dimension ? Let us see :

Draw a straight line (Fig. i). Mark off one inch.

This gives a figure of one dimension (length). It is

bounded by two points.

On this line as base draw a square (Fig. 2). It has

two dimensions (length and breadth). The new
dimension is obtained by drawing a line at right angles

to the first direction. The square is bounded by four



SIMPLY EXPLAINED 183

straight lines; the two-dimensional figure is bounded

by four one-dimensional figures. It has four extreme

points, corners.

From another point of view, the square is formed

by moving the line sideways (at right angles to itself)

for a distance equal to its length.

With the square as base, construct a cube (Fig. 3).

It is a three-dimensional figure. The third direction

is at right angles to the other two, or to any line in the

plane. The cube is bounded by six squares ; the three-

dimensional figure is bounded by six two-dimensional

figures. It has twelve bounding lines and eight corners.

The cube is formed by lifting the square upward
from the surface to a height equal to its length or

breadth.

£

2-&

/ /
X

B

/ /
Fig. 3- Fig. 4.

If we could move the cube in a fourth direction, at

right angles to all its sides, we should form a four-

dimensional figure. By analogy, it would be bounded

by eight three-dimensional figures (cubes), and would

have twenty-four square sides, thirty-two bounding

lines, and sixteen points. (C. H. Hinton calls it a

"tesseract.")

We can represent a three-dimensional figure, like a

cube, on a two-dimensional surface, like paper. It is

just as easy to represent the new four-dimensional

figure on the two-dimensional surface of the paper.

Beginnings the point A (Fig. 4), we draw, first,
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AB, a one-dimensional figure. Next, ABCD, a two-

dimensional figure, AD being at right angles to AB.
Third, the three-dimensional cube, AG) its new direc-

tion, AE, being at right angles to both AB and AD.
Now, let AJ represent a new direction, at right

angles to all three directions, AB, AD and AE. This

will be the fourth direction or dimension. We can

complete the figure as before. This is a true picture of

a four-dimensional figure represented on a surface

:

that is, in space of two dimensions. It is bounded by
eight cubes, twenty-four squares, thirty-two lines and
sixteen points.

A BA' B'

A

Fig 5-

Just as the cube was formed by moving the square

upward for a distance equal to its length or breadth,

so this "four dimensional cube" is formed by moving
the cube for an equal distance in a new direction at

right angles to all its sides.

In the flat picture (projection) of the cube, the

square sides seem to overlap, to occupy the same space.

In reality they do not overlap. So, in the flat picture

of the four-dimensional figure, the cubes forming its

boundaries seem to overlap. But in space of four di-

mensions they would not overlap.

Let us approach the question in another way. Draw
a straight line (Fig. 5). Mark off on it two points,

A and B. A one-dimensional person could push the

line along till it reached the position A'B'. But he

could not rotate it round B till it reached the position

B"A".
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Now, let us take a two-dimensional figure, such as a

right-angled triangle, ABC (Fig. 6). A- two-dimen-

sional man could push the triangle sideways, to the

position A'B'C (Fig. 7). He could also rotate it

A\ A'

C-^^ B c'^

-c"
W

A

B
B
A

/

^-

Fig. 6. Fig. 7

round the point B till it took the position A"B"C". But

he could not conceive the triangle turned over, so as

to take the position DEF (Fig. 8). He could not

rotate it round a line (AB). But for us, three-dimen-

sional folk, it is easy to turn the triangle over—to

rotate it round a line—so that it appears reversed, as

in a looking-glass.

Now, let us take a three-dimensional figure, a cube

(here represented in two dimensions, flat). We can

easily think of the cube turned round so as to take

the position in Fig 10. We cannot turn it round so as

to take the position in Fig. 1 1 , that is, with right and

left reversed, as we see ourselves in a looking-glass.

We cannot rotate the cube round a surface. A four-

dimensional person could, just as we can turn a triangle

over, so that right and left are reversed.
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We cannot do this. But we can easily represent it,

either by holding our cube before a looking-glass or

by such a diagram as Fig. 12. Here we can think of

either the side ABCD or the side EFGH as being

nearest to us, as being the front of the cube. It

changes as we look at it.

This right-and-left rotation is characteristically four-

dimensional, Something very like it occurs in nature.

A beam of polarized light (whose wave-vibrations are

all in one plane) is rotated either to the right or the

/ / / / / / /
A

D

B

C
G

F

G

E

H

E

H

F

G
C

A

H
B

G
/ / / / /

Fig. 9.

D C

Fig. 10. Fig. 11. Fig. 12.

left, on passing through certain substances (sugar,

starches), just as we might hold a ribbon by the ends

and give it a twist to right or left. Dextrose and levu-

lose (forms of sugar found in honey) owe their names

to the fact that one rotates a polarized beam to the

right (dextra, "right hand"), the other to the left

(lseva, "left hand"). In chemical constitution, they

are exactly the same. Such substances are called

"isomeric." It is suggested that their contrasted

properties are due to right and left reversal of their

atoms, a four-dimensional movement in the minute

particles of which they are built up.

Certain snails, exactly alike in all other characters,

have a like difference; some are coiled to the right,

others to the left. It is remarkable that their juices
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have a corresponding property of rotating a polarized

beam to right or left. This suggests that their external

form is an expression of an internal difference, a right

or left twist of their atoms, by a four-dimensional force.

The correspondence of the right and left hand, the

right and left sides of the face or body, is similar. It

could be produced by a four-dimensional twist, just

as our Fig. 10 becomes Fig. n. It is suggested that

such a four-dimensional twist runs through living

forms; that the life-force is in part four-dimentional

Similarly, it is suggested that electric and magnetic

forces are four-dimensional. Let us illustrate : Take

a piece of flexible India rubber, shaped like an uncut

pencil. You can roll it between your finger and thumb,

thus rotating it on its center line (or axis). Now
fasten the ends together so as to make a ring. You
can turn this ring inside out, rotating it on its axis,

which is now a circle instead of a straight line. A
smoke-ring has just this motion, turning rapidly inside

out. The particles on the outside keep moving to the

right, while those on the inside move to the left.

Xow, imagine another dimension added to the axis

of our smoke-ring. Instead of a circle, it will be a

cylinder or tube. The outside surface of the tube will

have a continuous movement to the right; the inside,

a continuous movement toward the left. It will be a

four-dimensional 'Vortex ring." It is suggested that

an electric current going along a wire is such a "four-

dimensional vortex-ring." The positive current has a

continuous right-hand movement ; the negative, an

equal and opposite left-hand movement.

Is our mental sight four-dimensional ?

Consider the cube in Fig. 12. As we look at it,

either face may be taken as the front. Without chang-
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ing our point of view, we can look at the back and the

front equally well ; or at the outside and inside of each

of the sides. Our line of sight is, therefore, perpen-

dicular to all the sides, as we saw that the fourth

dimension must be.

We can do this, because our cube in Fig. 12 is not

really solid. A four-dimensional man could do it with

a solid cube. And we can do in thought what he could

do in fact.

For imagine a solid cube before your mind's eye.

You can look direct at the front of it. You can look

equally straight at its back or at any side, without either

moving your own imagined position or the cube's posi-

tion. This is four-dimensional.

In the same way you can imagine a locked box, and

at the same time imagine the inside of it, without think-

ing of it as open. You can imagine taking a diamond

necklace out of it, while it remains locked. This is

four-dimensional robbery, and would be easy to a four-

dimensional bank-robber. Our safes would lie open to

him for all their locks.

Draw a square on paper. It represents a two-dimen-

sional room. A two-dimensional man could leave it

only by going along the surface of the paper to one

edge. Put your finger on the paper within the square.

It represents the apparition of a three-dimensional

being in a two-dimensional room. Raise your finger.

The apparition has vanished without approaching the

boundaries of the room. Similarly, a four-dimensional

being could appear in the center of a three-dimensional

room, and disappear as suddenly; just as you can think

of yourself in one room and then in another, without

having to think of yourself as approaching and going

through the doors. This is four-dimensional.
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Here is a two-dimensional knot (Fig. 13).* A two-

dimensional man could only tie it by rotating half the

string in a circle, thus bringing the two ends together.

We can tie it by simply folding part of the string over

without bringing the ends together. We could also

tie such a knot on an endless cord—a circle of string.

Similarly, a four-dimensional man could tie one of our

three-dimensional knots without bringing the ends of

the string together ; or he could tie knots on an endless

cord—say a ring of leather formed by cutting out the

jQ

Fig. 13.

center of a disk of leather. The fact that a four-dimen-

sional being could tie such knots, take things from

closed boxes, write inside closed box-slates, appear and

vanish, suggested to Zollner of Leipzig that four-

dimensional beings do do these things—at seances.

Again, imagine a two-dimensional space, like the

surface of water. Take a cone, point downward, and

immerse it in the water. First, only a point touches

the water. It beccmes a tiny circle, which gradually

expands, till the whole cone is just immersed. Plunge

it deeper, and the cone vanishes from our two-dimen-

sional space—the surface of the water. A two-dimen-

* See foot-note, page 30.
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sional man could only conceive a cone in this way : a

point, succeeded in time by expanding circles, and
finally vanishing.

It is suggested that we in like manner could only

perceive a four-dimensional form as a series of three-

dimensional forms succeeding each other in time.

Thus, the seven ages of man—infant, schoolboy, lover,

soldier, to lean and slippered pantaloon—may be

thought of as our three-dimensional perception of a

four-dimensional form. They may be simultaneous,

not successive, like the circles forming the cone. Both

vanish at the end—the cone into three-dimensional,

the man, perhaps, into four-dimensional space. Thus
time, which has only one dimension (length, but not

breadth or height), may represent a fourth dimension

added to our three-dimensional space.

If our mental vision be four-dimensional, then our

mental or spiritual self may be four-dimensional. If

seance-wonders are four-dimensional, they may repre-

sent the powers of spiritual beings. If time is but the

way in which we perceive the fourth dimension, then

our spiritual selves, being four-dimensional, may be

above time, outside of time—eternal.

Plato may have had this in mind when he compared

us to men chained in a cave, watching shadows on the

wall. That is, three-dimensional beings limited to two-

dimensional perceptions. Did he mean that we are

four-dimensional (spiritual) beings limited to three-

dimensional (material) perceptions?

Had Paul the fourth dimension in mind when, speak-

ing of spiritual life, he enumerated "the breadth and

length and depth and height "(Eph. iii., 18) ; or when
he wrote : "I knew a man, whether in the body, or out

of the body, I cannot tell, how that he was caught up
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into paradise, and heard unspeakable words" (II. Cor.

xii., 2-3) ? Had John the same thought when he "was
in the spirit" and saw "the city foursquare" ? Was the

body of the resurrection, which appeared in the midst

of a closed room, a four-dimensional body? Was
the ascension a like disappearance?

These are some of the questions connected with the

fourth dimension. This much is certain, that the term

comes to us from a firm believer in spiritual life.

Henry More, the Platonist, used the phrase "quarta

dimensio"—the "fourth dimension"—in his "Enchiri-

dion Metaphysicum" ch. 24, 7, about the year 1671,

while Milton was still alive.

Again, solids move in lines, like a bullet; that is,

in one dimension. Liquids tend to move in two dimen-

sions, as water spreads over a surface. Gases tend to

move in three dimensions, as air fills a bubble. Does

ether tend to move in four dimensions ? Are its contra-

dictory properties the expression of this ?

Are dreams four-dimensional? Is this the reason

of their "simultaneous succession"—years in a mo-
ment? But our (three-dimensional) space is limited.
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XVII.

OTHER DIMENSIONS THAN OURS,

BY "CUBE" (W. T., HOLLAND).

Suppose some men were obliged to creep along

inside a long gaspipe, so narrow, that each man would

just fit it, and that consequently no two men could

pass one another. Then each man would be able to

move to and fro in the direction of the pipe, but in no

other direction.

In such a case each man would be able to see only

the feet of the man in front of him, and if any con-

versation should be held, it is very probable that it

would be about the length they had moved, and not

about breadth or height.

If you should look at the pipe from a great distance,

you would see it as a black line, and if you were able

to see through the wall, you would see little things

moving along it.

Suppose a number of men were obliged to creep

between two parallel horizontal planes, so near one

to the other, that they just fitted between them. They
would have more freedom of movement than the men
in the pipe, for they would be able to move in different

directions. From any given place they would be able

to move to some other place by creeping first in one

arbitrarily chosen direction and after that in a direction

perpendicular to the former.
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If you were to stand at a great distance above the

planes, you would see only one plane, and if you were

able to see through it, you would see little things,

seemingly moving on that plane.

In ordinary life our movements are not so restricted

as in the above-mentioned states, for we are not only at

liberty to move on the surface of the earth, but we can

also move in a direction perpendicular to it.

It might be possible to shut up the men within the

pipe by means of a small hindrance at each of the two
ends. The men between the planes might, in a similar

way, be shut up by means of a wire, forming a closed

figure, placed between the two planes, say at equal

distances from each. Looking at the pipe, you would
say that the movement in the pipe is restricted by two
points, one at each end of the line, and that the move-
ment on the plane is restricted by some closed figure on

the plane.

But in ordinary life, neither a point nor a closed

figure (for example, a figure drawn on the surface

of the earth) is sufficient to hinder us from moving.

We are restricted in our movement only when we are

inclosed in a room or some other hollow body.

Now, the mathematician is accustomed to say that a

line has one dimension (namely length), that a surface

has two dimensions, and that a solid has three dimen-

sions. This is done because a surface may always be

compared with a rectangle, which has length and

breadth, and a solid may be compared with a rectan-

gular block, which has length, breadth, and height.

For the better understanding of the following, we
will suppose that the pipe is really what it seems to

be at a distance, namely, a single line, in which crea-

tures are moving, which are not human beings, but
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which have the form of lines without any thickness.

In the same manner, we will suppose that the crea-

tures between the planes are not human beings, but

that they are what they seem to be from a distance,

namely, flat figures moving on a plane. The wire,

which prevents them from moving at will, is then also

a closed figure, drawn on the plane.

In the line, movement is possible only in one direc-

tion; therefore, we will call that line one dimensional

space, and the creatures therein one-dimensional beings.

In the plane, movement is possible in one arbitrarily

chosen direction, and also in one perpendicular to that

direction ; therefore, we will call that plane two-dimen-

sional space, and the creatures in it two-dimensional

beings. We ourselves are three-dimensional beings,

living in three-dimensional space. In that space we can

move in any chosen direction, then in one perpendicular

to it, and again in a third direction perpendicular to

the first and second. For instance, you may walk

along in a street, then move perpendicularly to the

street when you enter a house, and after that move
perpendicularly to the surface of the earth by rising

in an elevator.

Now, the question arises : Is it possible that a fourth

direction should exist, which is at the same time per-

pendicular to the first, second and third direction ? That
fourth direction we cannot see or draw ; we are only

able to think and to speak about it. A creature, able to

move in the fourth direction, would be a four-dimen-

sional being, and would have at his disposal a four-

dimensional space.

A one-dimensional being cannot move in two-dimen-

sional space, but he can think about it; a two-dimen-

sional being cannot move in three-dimensional space,
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but he can think and speak about it. In the same way,

we, three dimensional beings, cannot move in four-di-

mensional space, but we can, by reasoning, find out

what a four-dimensional being would be able to per-

form, and what things might exist in four-dimensional

space. We do that by making a comparison with space

of fewer dimensions, as follows

:

The one-dimensional space can be supposed to lie in

a two-dimensional space; the two-dimensional space to

lie in a three-dimensional one. In the same way, three-

dimensional space may lie in a four-dimensional one.

That is to say, the two-dimensional space surrounds the

one-dimensional ; the three-dimensional space surrounds

the two-dimensional, and thus the four-dimensional

space must surround the three-dimensional. A two-

dimensional creature would be hindered in its move-

ment by a one-dimensional space lying in its two-dimen-

sional space, if this one-dimensional space were impene-

trable ; it would be obliged to rest all its life on one side

of the line, and it could never come in contact with two-

dimensional beings on the other side of the line.

Two two-dimensional creatures on different sides

of the line could, perhaps, hear each other, but never

see each other.

A three-dimensional creature would be hindered in

its movements by a two-dimensional space if this latter

were impenetrable; it would be obliged to spend all

its life on one side of the plane, and could never come
in contact with beings on the other side of the plane.

In the same way, three-dimensional space would, if

it were impenetrable from the side of the fourth direc-

tion, hinder two four-dimensional beings from coming

in contact one with the other.

But as long as our world exists we have never heard
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of any hindrance to our movements by some plane.

Therefore, we will suppose that one-dimensional space

is penetrable for a two-dimensional being; that a two-

dimensional space is penetrable for us ; and that our

three-dimensional space is penetrable for a four-

dimensional being. Thus a two-dimensional crea-

ture would be able to enter one-dimensional space

at any given point, consciously or unconsciously.

If for a moment we return to our first idea of human
beings in a gaspipe, the two-dimensional creature

might (by a groove in the wall) take off* the hat

of one of the men, and put it a few seconds later

on the head of another. Neither the latter nor the

owner would have the slightest notion where the hat

had come from or had gone to. The former would

have lost its hat out of sight immediately; the other

would see it appear suddenly. In the same way, a

three-dimensional man would be able to take off the

hat of a two-dimensional creature, and take it outside

the wire-fence, within which the latter is shut up, only

by removing it out of the plane and passing it through

three-dimensional space. The two-dimensional crea-

ture would see his hat disappear, without having any

notion of where it had gone to, and a short time after

he might see it appear again at a place which he would

never be able to reach without breaking the limiting

fence. We conclude from this that a four-dimensional

being would be able to remove our hat and take it

outside the room in which we are, without breaking the

walls, or opening a door or a window. We should

see the hat disappear without understanding where

it had gone to, and would see it reappear after a

short time in the street, without seeing where it had

come from. The four-dimensional being would have
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taken it out of our space, and passed it through its

own space.

A one-dimensional being is unable to turn so as to

make its head occupy the place of its other extremity

;

but if that same being should be taken to two-dimen-

sional space, it might be turned round there, and then be

put in the desired position. In the same way a two-

dimensional being would not be able to turn upside

down, but a three-dimensional being may do this by

taking the two-dimensional being out of its plane, turn-

ing it round, and replacing it.

Suppose that same two-dimensional being to have

the form of a rectangle with

points ABCD (Fig. i), then its A B
fellow-beings would see a very re-

markable change in its state. For

if before this points A, B, C, and D
D succeeded each other the way
of the sun they would, after the

return of that being, follow each p
other in a contrary direction. Its

fellow-being would have seen it

disappear suddenly without having
a notion where it had gone to, Fig x

and would have seen it reappear

suddenly, but now inverted ; for what first was on the

right will now be on the left.

We gather from this that a four-dimensional being

would be able to take a right-hand glove out of our
space to his, and to bring it back as a left-hand glove

;

that a man taken to four-dimensional space might be
(but not necessarily must be) transformed into his

reflected image, with his heart on the right side of his

body instead of on the left side, etc.
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In drawing a one-dimensional space we have to

draw only lines, each line having two limiting points.

In two-dimensional space we can move that line at

right angles to its direction, and we can obtain a square.

The moving line is in its initial and final position a

side of that figure; the two other sides are described

by the limiting points of the line. By moving the

square perpendicularly to its plane we can obtain a

cube. The moving square is in its initial and final

position, a limiting face of the cube; the sides of the

square describe each another limiting face of the cube

;

consequently, there are six such-like faces. Each point

of the square describes an edge of the cube ; the square

gives both in its initial and final position four edges

;

consequently, the cube must have 4 + 4 + 4, i.-e., 12

edges.

If it were possible to move the cube in a fourth direc-

tion, perpendicularly to the three above-mentioned ones,

then we should obtain a four-dimensional solid—let us

call it an over-cube—of which by comparison we may
notice the following properties : The cube in its initial

and final position would form a part of the boundary

of the solid ; each limiting face of the cube would have

described a new cube; consequently, the boundary

would consist of 2 + 6, i. e., 8 cubes.

Each of the 12 edges of the cube would describe a

square; in both the initial and final position there are

6 squares ; so the over-cube would possess 12 + 6 + 6,

i. e., 24 square faces.

Each of the 8 points of the cube would describe an

edge ; in both the initial and final position there are 1

2

edges; so there will be a total of 8 + 12 + 12, i. e.,

32 edges.

The one-dimensional line has two final points, the
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two-dimensional square has 2 X 2, i. e., 4 points ; the

cube has 2 X 4, i. e., 8 points ; consequently, the over-

cube must have 2X8, i. e., 16 points.

If a circle in two-dimensional space is passed through

a one-dimensional space (which lies in that two-dimen-

sional space), just between two one-dimensional beings,

then these beings would be separated. Their distance

would gradually increase until the moment that the

center of the circle should be in the one-dimensional

space ; then that distance would be equal to the diameter

of the circle. As the circle continues its movement, the

beings would be able to approach each other again,

and would reach each other at the very moment that

the circle should disappear out of their sight. The
one-dimensional beings would get the notion of a line,

which grows to a certain maximum and then dimin-

ishes to zero.

If in the same way a sphere in three-dimensional

space were to move through a two-dimensional space

then there will be seen on the plane a circle, which

gradually increases to a maximum and then diminishes

to zero.

We conclude from this that in the fourth dimension

there may exist a figure which, by passing through our

three-dimensional space, would give us the impression

of a sphere, growing larger until it reached a maximum
and then gradually diminishing to zero.

For two-dimensional beings that, which we call their

surface, is the inner part of them. They are not able

to see each other's surface. For one-dimensional beings

the line itself forms the inner part; they are not able

to see that part of each other. But a two-dimensional

being is able to touch the inner part of a one-dimen-

sional being, and a three-dimensional being can touch
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the inside of a two-dimensional one. In none of these

cases the touching creature is seen by the touched one

;

there can be only a strange feeling.

We conclude from this that a four-dimensional being

may be able to touch our inner parts without being

seen by us.
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XVIII.

THE MEANING OF THE TERM "FOURTH
DIMENSION."

BY "GEORGE^ ( GEORGE GAILEY CHAMBERS, PH.D.).

The phrase "space of four-dimensions" has been

used in three distinct connections : in pure mathematics,

in various theories put forth to explain certain phe-

nomena in the physical sciences, and, lastly, in attempts

to provide a suitable abiding place for the spirits of

the dead. It was introduced and developed in mathe-

matics long before it was used in either of the. other

connections. Moreover, its use in those other connec-

tions has been simply a succession of attempts to apply

the mathematical concept.

Hence, the aim of this paper is first and chiefly to

explain the meaning of the phrase as it is used in

mathematics. There it is simply a language device to

put certain mathematical facts in a more convenient

form or to secure greater generality of expression or

for both of these purposes. There is no question raised

as to whether such a space actually exists or not. A
space of four dimensions arises primarily by generaliz-

ing a few of the fundamental facts of ordinary plane

and solid geometry. Consequently, an exact explana-

tion cannot be given without first stating those facts

on which the generalization is based.

Before taking up that explanation, I will mention

some examples of other words whose meaning has

been extended in a similar manner. In law, the word

person has been extended so as to include a legal cor-

poration. By this device a single statement is sufficient
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to express any principle of law which applies both to

natural persons and to corporations. In double-entry

bookkeeping, the accountant charges and credits "bills

payable" or "merchandise" just as he charges and

credits John Doe. He does this simply as a device

which enables him to get a better view of the status of

the business. In elementary arithmetic, we use the

word "times" in its primary meaning only when the

multiplier is an integer, as 3 times $y2 . With its

original meaning it could not be used to express the

related problem of taking a fractional part, as % of

5% . The meaning of the word was extended, however,

so that we now say 2^/4 times 5J^, or even \/ 2 times

SYz. We thus secure a generality of expression. This

use of the word does not imply at all that anything can

happen or be done 2^4 times or \/ 2 times in reality.

O

Fig. 1.

The word dimension primarily means measurement.

If we think of a straight line ( Fig. 1 ) , and of one

fixed point on it, 0, then the position of every other

point on it, P, is fixed by one measurement, if its

direction from the fixed point be given. Since one

measurement is necessary and sufficient to fix a point,

a straight line is called a space of one dimension. This,

by the way, is a use of the word space, distinct from

its ordinary use. For the same reason, any continuous

line is called a space of one dimension. We will dis-

tinguish a straight line by calling it a straight one-

dimensional space.

In a plane, two measurements are necessary and suffi-



SIMPLY EXPLAINED 203

cient to fix a point, P (Fig. 2), with reference to two
perpendicular straight lines OX and OY. Conse-

quently, a plane is called a space of two dimensions.

I

Fig. 2

For the same reason, any continuous surface is also

called a space of two dimensions. We will distinguish

a plane by calling it a straight two-dimensional space.

In like manner, three measurements are necessary

B

Fig. 3-

and sufficient to fix a point, P (Fig. 3), in ordinary

space with reference to three mutually .perpendicular

planes, XOY
'
, YOZ, and ZOX. Hence, ordinary space
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is called a space of three dimensions. It should be

noticed that this last sentence contains both of the dis-

tinct uses of the word space.

We can now state the following definitions which
evidently hold in ordinary plane and solid geometry:

A one-dimensional space (a line) is a space such

that one measurement is necessary and sufficient to

fix a point.

A two-dimensional space (a surface) is a space such

that two measurements are necessary and sufficient to

fix a point.

A three-dimensional space (such as ordinary space)

is a space such that three measurements are necessary

and sufficient to fix a point.

We can immediately generalize by adding to this set

of definitions the following

:

i. A four-dimensional space is a space such that

four measurements are necessary and sufficient to fix

a point.

Let me here remind the reader that this statement is

not intended to define anything that we can conceive

mentally in the sense in which we conceive the spaces

of fewer dimensions.

In a plane (a straight two-dimensional space) there

are an unlimited number of straight lines (straight one-

dimensional spaces). In ordinary space (a three-

dimensional space) there are an unlimited number of

planes (straight two-dimensional spaces). By general-

izing we will give to our four-dimensional space the

following property

:

2. In a four-dimensional space there are an unlimited

number of three-dimensional spaces.

The ordinary definition of a plane is as follows : a

plane (a straight two-dimensional space) is a surface
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(a two-dimensional space) such that if any two points

in it be joined by a straight line (a straight one-dimen-

sional space), every point in that straight line will lie

in the surface. Similarly, we will define a straight

three-dimensional space as follows

:

3, A straight three-dimensional space is a three-

dimensional space such that if any three points in it

be joined by a straight two-dimensional space (a plane)

every point in that two-dimensional space will lie in the

three-dimensional space. Ordinary space is evidently a

straight three-dimensional space.

In a plane (a straight two-dimensional space), any

straight line (straight one-dimensional space) may be

rotated about any point in that line, and even if the

amount of rotation be ever so small, the line will

occupy an entirely new position, excepting the point

about which it was rotated. In ordinary space (a

three-dimensional space), any plane (straight two-

dimensional space) may be rotated about any straight

line (straight one-dimensional space) which lies in that

plane, and even if the amount of rotation be ever so

small, the plane will occupy an entirely new position,

excepting the line about which it was rotated; i.e.,

any fixed point in ordinary space originally in the plane

but not in the axis of rotation will no longer be in that

plane. By generalizing we will give to our four-dimen-

sional space the following additional property:

4. In a four-dimensional space, any straight three-

dimensional space (such as ordinary space) may be

rotated about any two-dimensional space (plane) which

lies in that three-dimensional space, and even if the

amount of rotation be ever so small, the three-dimen-

sional space will occupy an entirely new position except-

ing the two-dimensional space (plane) about which it
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was rotated; i.e., any fixed point in the four-dimen-

sional space which was originally in the three-dimen-

sional space, but not in the plane of rotation, will no
longer be in that three-dimensional space.

From the foregoing definitions and assumptions, the

following theorem can be proved

:

5. Any four points not all in the same plane deter-

mine a straight three-dimensional space.

Proof : Let A, B, C and D be any four points not all

in the same plane. Pass a straight three-dimensional

space through the points A, B, and C, and rotate it

about the plane of A, B, and C. The principle of rota-

tion, 4 above, shows that there will be one and only one

position in which the rotating three-dimensional space

will contain the point D. Hence the points A, B, C,

and D determine a straight three-dimensional space.

From this theorem we have the following corollary

:

6. Two straight three-dimensional spaces intersect

in a plane.

For if all the points of the intersection do not lie

in one plane, let A, B, C, and D be four points of the

intersection not all in one plane. Then, by the theorem,

there will be just one straight three-dimensional space

containing all of them; but by hypothesis they are con-

tained in two such spaces.

Proceeding in this way a geometry of four dimen-

sions can be built up and all the theorems of plane

geometry will hold in any plane contained in the four-

dimensional space, and likewise all the theorems of

solid geometry will hold in any straight three-dimen-

sional space contained in the four-dimensional space.

Our ordinary space can always be considered as being

one of the three-dimensional spaces contained therein.

While the whole structure just described is nothing
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more than a language device, yet it gives the geometer

a means of proving many theorems of plane and solid

geometry. In many cases these theorems can be proved

much more easily by making use of the geometry of

four dimensions than by using the ordinary methods.

In fact a number of new theorems in plane and solid

geometry have been discovered by means of the geome-
try of four dimensions. Schubert, in his mathematical

essays, gives a very interesting case of that kind.

I wish to refer to one other interesting example

before leaving this part of the discussion. It has been

proved that in four-dimensional geometry there are six

regular structures corresponding to the five regular

solids of ordinary geometry. Now, just as a figure in

solid geometry can be projected upon a plane, so these

regular structures in four-dimensional geometry can

be projected upon a three-dimensional space (ordinary

space). A few years ago, Dr. Paul R. Heyl, then a

graduate student at the University of Pennsylvania,

constructed wire models of such projections. These

models are now preserved in the mathematical seminar

room in the University of Pennsylvania.

The most valuable use of the geometry of four

dimensions is distinct from the use mentioned above.

To understand it one must have a slight knowledge of

analytic geometry, or of the geometrical representation

of algebraic equations. Corresponding to any pair of

numbers, there is a point in a plane (two-dimensional

space) ; e. g., to the pair of numbers (4, 3) there

corresponds the point P (Fig. 2). Corresponding to

any set of three numbers there is a point in ordinary

space (three-dimensional space) ; e. g., to the set of

numbers (3, 2, 4) there corresponds the point P (Fig.

3 ) . Similarly, from the above definition of four-dimen-
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sional space it follows that to any set of four numbers,

say (2, 1, 5, 4), there corresponds a point in four-

dimensional space.

Also, to any relation in algebra between two variables

there corresponds a line in a plane; e. g., to the first-

degree equation, 2x + y= 3, there corresponds a

straight line in a plane. To any relation between three

variables there corresponds a surface; e. g., to the first-

degree equation, x + 33/ + 2z= 1, there corresponds

a plane. Then making use of the language of four-

dimensional geometry we can say that corresponding to

any relation between four variables there corresponds a

three-dimensional space; e.g., to the first-degree equa-

tion, x + y— 2Z + 32/ = 4, there corresponds a

straight three-dimensional space. This is really noth-

ing but a translation of the algebra into the language

of geometry. In a similar manner any algebraic rela-

tion can be translated into the language of geometry.

It frequently happens, when a long algebraic discus-

sion is translated into geometric language, that it be-

comes much more concise, and consequently the mathe-

matician can get a much better view of his discussion

as a whole
;
just as the bookkeeper by using the method

of double-entry bookkeeping gets a much better view

of the status of affairs in his firm. Moreover, when
the bookkeeper has his accounts arrayed by the double-

entry method, he is frequently able to discover import-

ant facts about his firm's business which would have

eluded him if he had used the old single-entry system.

Just in the same way, the mathematician has frequently

discovered important facts in his algebra by viewing

it after translation into the language of geometry.

These newly discovered facts can then be translated

back into algebraic language and become a valuable
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addition to his store of knowledge. This is the most

important use of four-dimensional geometry.

The value of this will appear to one disposed to

look at the practical side, if we consider how these

algebraic relations may arise. The problem of a falling

body gives rise to a relation between two variables,

namely, time and the distance through which the body

falls. This gives us an algebraic relation, ^=i6^ 2
,

from which, by algebraic manipulation, other relations

may be derived. These derived relations can then be

interpreted in the terms of the original problem of a

falling body. In some problems in electricity four

variables are related. Such a relation can sometimes be

expressed in algebra, deductions made from it, and

these deductions interpreted again into the terms of

electrical theory. Xow, if the mathematician, by mak-
ing use of the language of geometry, can discover other

facts, these facts also can be interpreted into the terms

of electrical theory.

Thus far we have treated of the meaning of the

term fourth dimension as it is used in mathematics.

The same term has been used in attempts to explain

certain physical phenomena, such as the phenomena of

light. The properties of the space thus assumed by the

physicist are exactly the same as the properties assumed

or developed by the mathematician. The physicist

assumes the existence of a space of four dimensions,

takes those properties, combines with them other phys-

ical principles, and makes deductions therefrom. He
adds nothing to the meaning of the concept of a fourth

dimension. Therefore, his theories are outside the

scope of this paper.

In the third case, stated in the beginning, that of pro-

viding a place for the spirits of the dead, the procedure
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has been very much the same. Here also no new
properties are added to the meaning of the term. The
attempts of those interested in this use of it have been

directed toward justifying the assumption of its exist-

ence. Hence, their considerations also are beyond the

present scope.
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XIX.

A PUPIL IN GEOMETRY QUIZZES HIS
TEACHER ABOUT THE FOURTH

DIMENSION.

Being a Report, with some Modifications, of an
Actual Class-room Discussion.

by "arcturus" (elmer e. burns, joseph medill
high school, chicago).

Pupil : The newspapers have been printing things

lately about the fourth dimension. Will you tell us

something about it?

Teacher : I will do my best, but I fear that you will

not be able to understand me. •

Pupil : I don't understand what the fourth dimen-

sion is.

Teacher : State your difficulty as clearly as you can

and it may be that I can help you.

Pupil: We have been studying about figures and

objects that have length, breadth, and thickness. I

don't see how an object can have another dimension.

Teacher : Objects such as you and I can see and

handle do not, so far as we know, have a fourth dimen-

sion, but there may be other objects that have four

dimensions.

Pupil : I don't see how that can be.

Teacher : Well, do you see how there can be an

object of only two dimensions? Did you ever see or

handle an object that had only length and breadth, but

not thickness ?

Pupil : No ; I never did. Even the thinnest sheet of

paper has some thickness.
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Teacher : Yet you have no difficulty in dealing with

figures, such as triangles and circles, that have no

thickness. You even talk about them as though they

actually exist.

Pupil : I thought there were such things as circles.

Teacher: You just said that you had never seen or

handled anything that had no thickness. Did you ever

see or handle a circle?

Pupil : No. Come to think of it, I never did. I see

that a circle exists only in my own thought and not in

reality.

Teacher : So far as our experience goes, we must

admit that is true, but may we not conceive of the

possibility of things existing which we cannot see and

handle, things beyond the reach of our senses, that have

no thickness ; in other words, that have only two dimen-

sions ?

Pupil : If they are not real to me, I don't see how
they can be real at all.

Teacher : Imagine for a moment that your shadow

on the wall comes to life. Now, a shadow, as a mere

surface, is not real to us. The shadow on the wall is

to us a symbol of unreality, of that which has no sub-

stance. Can you not now imagine the surface of the

wall extended indefinitely and a multitude of such

figures as your shadow moving about upon that sur-

face? These shadow figures cannot escape from the

surface. They are living in space of two dimensions.

If one of them points his finger, he points in some

direction in the surface in .which he lives; in other

words, in the direction of a straight line lying within

the plane. Perhaps the earth upon which such creatures

live is a circle, and they move about upon the circum-

ference of that circle. Other planets are circles, perhaps
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moving about a larger circle, as the planets of the solar

system move about the sun.

Pupil : Yes, I can imagine all that ; but that is a world

of two dimensions. I can't imagine a world in which

there are four dimensions.

Teacher : Perhaps not, because you have no experi-

ence like seeing your shadow to help you. But you may
be able to think of the possibility of such a world, and

indeed you have taken the first step in that direction.

Fig. 1.—The shadowman sees his image in a mirror*.

Suppose the shadow man sees his image in a mirror,

as in Fig. i. Suppose, in his vanity, he wishes to

appear as he does in the mirror, that is, to take the

position of his image. Do you see that, if he goes

to the other side of the mirror, remaining in his space

of two dimensions ; he is either standing on his

head or has his back to the mirror ? He cannot possibly

take the position of his image and remain all the time

in the plane. Now, suppose some higher being, who
lives in space of three dimensions like yourself, picks

up the shadow man and, turning him over, places him

in the position of his image—a movement you can
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represent to yourself by cutting the image out of paper,

turning it over and placing it upon the other side of the

straight line which represents the mirror. To accom-

plish this feat, you must take the shadow man out of

his own space of two dimensions and move every point

of his body in a direction which he himself could not

have conceived, because he could not point in any direc-

tion which would lead out of the plane in which he

lived, and he could not picture to his own mind a direc-

tion in which he could not point.

Now, when you look at your image in a mirror, the

right and left sides of your body appear to have

changed places. That freckle on your right cheek

appears on the left cheek of your image. Your image

is symmetrical to your body. You have learned in

geometry that two symmetrical figures cannot, in gen-

eral, be made to coincide. You may go behind the

mirror as far as the image appeared to be and turn

about, yet you cannot take the position of your image,

or rather make your body coincide with that position.

The freckle is still on your right cheek. Turn about as

much as you please in your space of three dimensions,

you cannot make your right and left sides exchange

places. But suppose there were another direction in

which your body might be turned by some higher being,

just as you might pick up the shadow man and turn

him about in a direction he could not think of, then

you might be placed in the exact position of your image.

Pupil : Is that the position I would have if I were in

space of four dimensions ?

Teacher : Oh, no ! That is the position you would

have after turning about in space of four dimensions

and returning to space of three dimensions, just as the

shadow man takes the position of his image after
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turning about in space of three dimensions and return-

ing to his space of two dimensions. Your whole body

would be turned in a direction entirely new to you, a

direction in which, so far as you know, you have never

yet moved, and a direction in which you cannot point.

You can point in all directions in your space of three

dimensions, just as the shadow man can point in all

directions in his space of two dimensions, but if there is

another direction you cannot point in that direction, nor

Fig. 2.—The square and its image in a mirror.

can you picture it to your mind, because your mental

pictures depend on your experience in space of three

dimensions.

Perhaps you can understand it better if we take

simple geometrical figures. In Fig. 2 we have a square

in the shadow world, and its image in a mirror. It

may be placed in the position of its image or the sym-

metrical position by taking it out of the plane or moving

it first in a direction perpendicular to the plane and

then turning it over. Tell the shadow man that a line

can be drawn at the point B perpendicular to both AB
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and CB and he will not believe you, because he cannot

know of any such direction from his own experience.

In Fig. 3 we have a cube and its image in a mirror.

To place the cube in the position of its image, it must
first be moved in a direction perpendicular to all its

edges. That direction is the fourth dimension. Now
you are like the shadow man. When I tell you that

^n >\ H^^\

D

B

r.

E

\ C

Fig. 3.—A cube and its image in a mirror.

there may be a line at the point E perpendicular to the

lines EF, EB, and EH, you do not believe me, because

you cannot picture to your mind any such direction.

Pupil : Can you draw that line ?

Teacher : That I cannot do. If I draw a line on the

blackboard or making any angle with the board, it

represents to your mind a line in space, the only space

you know, and that is space of three dimensions. You
see. the reality of the fourth dimension depends on there

being a direction of movement of which we are '"not
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conscious. We must admit that, as we know a direction

unknown to the shadow man, so some higher being may
know a direction unknown to us.

We may unconsciously move in that unknown direc-

tion just as the whole world in which the shadow man
lives might, unknown to him, be moved in a direction at

right angles to the plane.

There is another way in which we may think of the

fourth dimension. Just as we can understand how a

cube or a sphere appears to the shadow man, as it passes

Fig. 4.—A cube passing through the shadow world,

shadow man it appears as a square.

To the

through the surface in which he lives, so we can under-

stand how certain bodies of four dimensions would

appear if they were to pass through our space.

Let us think of a cube passing through the shadow

world, as in Fig. 4. The shadow man can see only that

part of the cube which lies within the surface in which

helives. If the cube is passing through with four edges

perpendicular to that surface, the shadow man sees a

square. As the cube passes through, the substance

of which that square is composed changes. We can see

this if we suppose the surface of the cube to be shaded,

say from yellow through orange -to red. Now, the
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colors of the lines which the shadow man sees bounding
the square will change as the cube moves through his

space. If he is a highly intelligent shadow man he may
think of the possibility of a third dimension and try

to imagine it just as you are trying to imagine the

fourth dimension. He has seen the changing square as

the cube moved through his space, and, since he cannot

picture to his mind the third dimension, he can only

represent this strange figure by a series of squares.

Each square is a section of the cube. He would know
that in order to change through the entire series of

squares the strange figure must move in the third

dimension, a distance equal to a side of the square.

We may think of a figure of four dimensions which

bears the same relation to the cube that the cube bears

to the square. A cube is generated by a square moving
in a direction perpendicular to its sides, that is, in the

third dimension. So this new figure is generated by

a cube moving in a direction perpendicular to all its

edges, that is, in the fourth dimension. As a cube

moving through space of two dimensions appears as a

continuously changing square, so this new figure in

passing through our space would appear as a continu-

ously changing cube. As the shadow man represents

the cube to himself by a series of squares, each square

being a section of the cube, so we may represent this

new figure of four dimensions by a series of cubes, each

cube being a section of the figure. To pass through

our space, this curious figure of four dimensions must

move a distance equal to one of the edges of the cube.

We might reason about other figures in the same

way. We might even think of a being whose form

bears the same relation to the human form that the

human form bears to its shadow.
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Pupil : I begin to see how we can think of a fourth

dimension, but how can you prove that it is real ?

Teacher : I cannot prove to you that it is real, since

I have never yet seen a body disappear from our space

and return to it after turning about in space of four

dimensions; nor have I seen a four-dimensional being

move through our space. If either of these things were

to happen or could be proved to have happened, we
should know to a certainty that there is a fourth dimen-

sion.

Pupil : Could anyone draw a picture of a body that

has four dimensions?

Teacher : If such a picture were drawn it would

have three dimensions, just as you may draw a picture

of a cube and your picture has two dimensions. If your

picture is drawn according to the laws of perspective

it represents to your mind a cube, as the cube appears

to you. Now, if a picture, having three dimensions

and representing a body of four dimensions, were

drawn, and if this picture accorded with the laws of

perspective in space of four dimensions, still it would

not represent to your mind a figure of four dimensions.

You would probably mistake it for a model. You.

would see only the three-dimensional figure. It would

require a being conscious of movement in the fourth

dimension to interpret the picture.
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XX.

POSSIBLE MOVEMENTS AND FORMS IN A
SYSTEM OF FOUR DIMENSIONS.

BY "DER CHEMIKEr" (j. CLYDE HOSTETTER,

LEWISBURG, PA.).

Geometry tells us that a point has no dimension;

that it possesses merely position in space. If, however,

we move a point continuously in space it will generate

a line (Fig. i), which is said to possess one dimension

Fig. i.—Moving point, P,

through space generates

a line which has one di-

mension—length.

Fig. 2.—Moving line, A B
t

generates a surface having

two dimensions—length and

breadth.

—length. Now, let us move the line thus made through

space. It generates a surface (Fig. 2), and we notice

that our surface possesses the one dimension of the

line and also a second dimension—breadth. From
a line possessing one dimension we have generated a

surface with two dimensions. Now, if we move our

surface through space it will generate a solid (Fig. 3 ).

This possesses the length and breadth of the surface

and, in addition to these, a third dimension—thickness.

From a point, then, we have generated a line with one
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dimension; from a line we have generated a surface

with two dimensions, and from a surface with two
dimensions we have generated a solid with three dimen-

sions. We have generated each of these in turn from

a form possessing one less dimension by motion

through a new dimension. Reasoning from this we
conclude that if we could move our solid through a

new dimension a figure would be generated which

possessed not only the length, breadth, and thickness

of the solid, but, in addition to these, still another

o

Fig. 3.—Moving surface, A B
CD, generates a solid which
has three dimensions—length,

breadth, and thickness.

Fig. 4.—To determine point P
on a line we measure from

zero to the point, obtaining

one number.

dimension. Such a figure would possess four dimen-

sions, and the existence of such a figure would require

the existence of a fourth dimension. It is by reason-

ing of this kind that the idea of a fourth dimension has

been developed.

Now, let us take a line and see why the term one-

dimensional is applied to it. On a line, the position

of a point and, therefore, the point itself, is determined

when its distance from an arbitrarily chosen point on

the line, the zero point, is known. We find this dis-

tance by measuring, in terms of the unit of length,

from zero to the point P (Fig. 4), in just the same
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manner as we measure temperatures on a thermometer

scale, the zero point of which has been arbitrarily

fixed. One number, then, determines the position

of our point. Now, a line may be considered as con-

sisting of an infinite number of points. So any point

of this point-aggregate is determined by one number,

and, in general, a one-dimensional system requires

one number for its determination. How is the point

determined in a two-dimensional system of points,

such as the plane? In determining the point on a line

we arbitrarily set a zero. Here we must also have a

zero for our measurements. We make this zero the

p

'

'

^L

Fig. 5.—To locate /'on a plane

we measure from P to each

of two axes at right angles,

thus obtaining two num-
bers.

Fig. 6.—To locate point P in

space, we measure from P
to each of three axial planes

at right angles, thus ob-

taining three numbers.

point at which two lines intersect each other at right

angles. Such lines may be considered the axes of

length and breadth. Now we measure the distance

from P (Fig. 5) to each axis, and having these two
distances our point can be determined. This is the

same system that is used in locating positions on the

surface of the earth, when we refer distances to the

parallels of latitude and meridians of longitude. A
point in the two-dimensional plane requires, then, two
numbers for its determination, and, in general, for a

two-dimensional system two numbers are necessary
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and sufficient for its determination. The idea of axes

is also used in determining position in a solid. A
reference to Fig. 6 will make this clear. Here the

three distances from point P to each of three planes

intersecting at right angles are necessary to determine

the position of P. So we find necessary the relation

of three distances to determine position in a three-

dimensional system. And, to generalize, an '^"-dimen-

sional system of points is such that "h" numbers are

necessary and sufficient to determine an individual

point amid all the points of the aggregate. Thus, in

a fourth-dimensional system four numbers are neces-

sary, and in a fifth-dimensional system five numbers,

and so on.

Let us now study the possibilities of motion in the

different systems. In a one-dimensional system there

is but one possible direction for movement. In a two-

dimensional system there is the possibility of movement

in two directions. On a line, then, motion is possible

in but one direction; in a plane, motion is possible in

two directions. In a two-dimensional system all move-

ments are either parallel to the two axes, or are com-

binations of movement in these two directions. Simi-

larly, in a three-dimensional system, there is possible

motion in three directions, and all movements in a

three-dimensional system are either parallel to the.

three axes of length, breadth, and thickness, or are

combinations of movement in these three directions.

If, then, we extend the argument, we see that in a

fourth-dimensional system, movement would be possi-

ble in one or all of four directions.

How many dimensions does the world in which we
live possess? We have seen that a solid possesses

three dimensions. Further, according to geometry, a
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solid is a limited portion of space. If we expand our

three-dimensional solid indefinitely, it would conse-

quently fill the space. We are accustomed to consider

space, therefore, as three-dimensional, and our world

is likewise a world of three dimensions. So reasoning

as above, every point in space can be reached by motion

in three directions.

However, there are some who argue as follows:

Motion in one direction will not take us to every point

in a two-dimensional system; likewise, motion in two
directions will not take us to every point in a three-

dimensional system. So, they assert that motion in

three directions will not enable us to reach all points

in space as it really is. We know that motion in three

directions will take us to every point in a three-dimen-

sional system. Then, if motion in three directions

will not take us to all points in space, we must assume

motion in a fourth dimension, and so a fourth-dimen-

sional space.

What, then, is this fourth dimension, and is there

any evidence for its existence? Before we attempt to

answer let us see clearly the difficulties encountered in

dicussing the fourth dimension. To beings living in

a one-dimensional world the idea of breadth has no
significance. To beings living in a two-dimensional

world the idea of thickness would have no significance.

They can move in but two directions and their world

is consequently limited to the dimensions of length

and breadth. Terms which are easily comprehended

by us, who live in a world of three dimensions, would
possess absolutely no significance to the two-dimen-

sional beings. Similar to this, then, is the difficulty

of describing the fourth dimension. If a fourth-di-

mensional being were to describe this dimension his
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description would contain terms having no meaning
to us. And when we attempt to describe this dimen-

sion we find our vocabulary, developed from our three-

dimensional experience, too limited. The best we
can do is to discuss the possibilities of a world possess-

ing four dimensions. We can determine some of these

possibilities by analogies from our three-dimensional

experiences.

The first analogy depends on the properties of con-

figuration. In a two-dimensional system we can place

three points at equal distances from one another. Tak-

ing a plane as our two-dimensional system, and con-

Fig. 7.—In a plane which has Fig. 8.—In three-dimensional

two dimensions three points space four points can be

can be equidistant, but not equidistant, but no more,

four points.

necting the three equidistant points, we have an equi-

lateral triangle (Fig. 7). Try as we will, however,

we cannot place four points in a plane equidistant from

one another. If we add another dimension to our

system the placing of four points equidistant from one

another can be accomplished. Taking three of the

points arranged in the form of an equilateral triangle

as a base, we place the fourth point in the third dimen-

sion above the others. We can place this at the same

distance from the points in the plane, as these are from

each other. Connecting our points by lines we have a
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tetrahedron, the vertices of which are equidistant

(Fig. 8). The placing of five points equidistant from
one another is impossible as long as we have but three

dimensions, but it would be possible if we could use

a fourth dimension.

Let us illustrate this space arrangement. In chemis-

try, the molecules of a compound are said to consist

of the atoms of the elements contained in the com-

pound. These atoms are supposed to be at certain dis-

tances from one another, and to be held in their relative

positions by certain forces. Formerly, all the atoms

in a molecule were conceived to lie in one and the same
plane. Now, however, the atoms are given a definite

space arrangement. In order to account for certain

facts, it has been necessary to assume in some mole-

cules that four atoms are equidistant from one another.

We picture them, therefore, as being situated at the

vertices of a regular tetrahedron. If it were necessary

to assume the equidistance of five atoms in the mole-

cule, this would be evidence for the existence of a

fourth dimension, as only in a fourth-dimensional sys-

tem would this be possible.

Another analogy depends on the properties of rota-

tion. In a plane, rotation takes place about a point;

as may be illustrated by the drawing of a circle by

means of a compass, in which the end of one leg of

the compass is the point about which rotation takes

place. It is impossible to have rotation about a point

in a one-dimensional system, as a line. In a three-

dimensional system, rotation may take place about a

line, as, for instance, the rotation of the earth about

its axis. In a world possessing four dimensions, how-
ever, Ave see by analogy that rotation would also be

possible about a plane.
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Let us see if this conclusion is justified. The pro-

cess of rotation is closely connected with that of super-

position, so the latter must be discussed to some extent.

The congruence, or, roughly speaking, the equality of

two geometric forms is determined by superimposing

one upon the other, and then seeing if the two forms

B A A B
Fig. 9.—Superposition of lines requires two dimensions.

coincide in every part. In a one-dimensional system

we cannot superimpose one line upon the other;* the

best we can do is to place the lines so that they meet.

The only way in which superposition of lines can be

secured is by moving one of the lines through a second

dimension and then placing it upon the other (Fig. 9).

Fig. 10.—The equality of i and 2 can be shown by displacement.

Keeping 2 and 3 in the plane they cannot be made to coincide

by any movement. Rotation of 3 through a third dimension

makes coincidence possible.

It takes, then, a two-dimensional system to give us

superposition of one dimension. Now, take the case of

two equal triangles on a plane (Fig. 10). We can

determine the congruence of I and 2 by displacement

;

that is, we move one of the triangles and then see if

* From what follows it appears that the author means superposition of A'

upon A and B' upon B.—H. P. M.
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the second can be made to occupy exactly the space

formerly occupied by the first. But how about tri-

angles 2 and 3 ? We see that here we cannot use the

process of displacement. We can measure the angles

and sides and determine their equality, but we cannot

superimpose one upon the other as long as they remain

in the plane. It required two dimensions for the super-

position of lines having but one dimension. Our tri-

angles have two dimensions, and we at once conclude

that superposition requires a third dimension So we

Fig. ii.—The equality of pyramids i and 2 can be shown by dis-

,
placement, i and 3, symmetrical pyramids, cannot, in three-

dimensional space, be made to coincide. By rotation of one

of them through a fourth dimension, coincidence would be

possible.

rotate one of them about an edge through a third

dimension until it again reaches the plane, and they

can now be superimposed. Rotation about a line and

superposition of two-dimensional figures require thus

the aid of a third dimension. In this passage through

the third dimension, however, the angles of the tri-

angle were reversed, that is, the anterior and posterior

angles are interchanged, and, in fact, it is due to this

that the superposition is possible.

Let us extend this idea to the superposition of one

solid upon another. For pyramids 1 and 2 we can use

the process of displacement (Fig. 11). How can we
superimpose 3 upon 2 ? Such pyramids are symmet-

rical. All lengths and angles of one have their exact
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duplicate in the other, yet the two cannot be made to

coincide, that is, be fitted the one into the other so that

they shall both stand as one pyramid. They corre-

spond exactly to our left and right hands. Our hands

cannot be made to coincide in our three-dimensional

space. The reflected image of the right hand, however,

could be made to coincide with the left hand; they

are alike one another, but on opposite sides of a plane.

Just so are pyramids 2 and 3. We cannot, in our

three-dimensional space cause symmetrical pyramids

to coincide. It requires rotation about a plane to give

us congruence. This is impossible now, but if it were

possible to hold one of the surfaces of either pyramid

and rotate the pyramid through a fourth dimension

back into our three-dimensional world it could be

accomplished. This is the fourth-dimensional analogue

of the superposition of the two triangles above de-

scribed. In this rotation the interior surfaces would

be converted into exterior surfaces,* and it is due to this

conversion that coincidence is now possible. This

interchange of exterior and interior surfaces may be

illustrated by turning a right glove inside out to form

a left glove.

Xow, to take another illustration from chemistry,

there are two varieties of tartaric acid which crystal-

lize in forms bearing the relation of object to mirror-

image. Such crystals are illustrated in Fig. 12. Ap-

parently these two varieties change the one into the

other without chemical resolution and reconstitution.

If it could be shown that such does take place, then

this would be proof of a fourth dimension, because

only in a fourth-dimensional space can a right-handed

shape become a left-handed shape bv simple movement.

* This is not true. See Introduction, page 28.— H. ?. M.
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These, then, are the most obvious of the possibilities

of a fourth dimension.

Is there a real fourth-dimensional world? It i£

highly improbable. If there were such a world would

it be inhabited by beings who could act upon us three-

dimensional beings, as the Spiritualists assert? We
reasoned the possibilities of a fourth-dimensional

world by analogy—we must reason this question in the

same way. If there is a fourth-dimensional world

containing beings that can act upon and influence

us, who are but three-dimensional, then, by analogy,

7^C

1 2
Fig. 12.—Crystals of a tartrate bearing the relation of object and

image. If I changed into 2 without chemical resolution and
reconstitution it would be proof of a fourth dimension.

we would expect the existence of a world of two-

dimensional beings upon whom we could consciously

act. We do not know of such a world. Also, we
would expect a fifth-dimensional world with beings

who could influence the beings of a fourth-dimensional

world, and so on. Perhaps there is a two-dimensional

world that we cannot influence. Then, the other

worlds should be independent also, and if the fourth-

dimensional beings can still influence us, then the

fourth-dimensional world would be an exception in the

great plan of creation. The existence of such a world

with beings that can influence us is, therefore, highly

improbable.
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1

In conclusion, let us summarize what we have

learned concerning the fourth dimension.

In a system of four dimensions

:

1

.

It would be possible to generate a body possessing

four dimensions by moving a solid through the fourth

dimension, just as a solid is generated in a three-dimen-

sional system from a surface with two dimensions.

2. It would be possible to move in four directions,

whereas, now we can move in but three.

3. It would be possible to place five points equidis-

tant from one another, whereas, now four is the maxi-

mum number.

4. Rotation would be possible about a plane, where-

as, now it is possible only about points and lines.

5. Coincidence of symmetrical solids would be pos-

sible.

6. If there is such, it is highly improbable that it is

inhabited by beings that can act upon us who are three-

dimensional.

Grateful acknowledgment is here given by the writer

to Hermann Schubert and C. H. Hinton, whose papers

have been freely used in the preparation of this essav
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XXI.

THE FAIRYLAND OF THE FOURTH
DIMENSION.

BY "A. CLEMENTUS" (a. C. SILVERMAN,

SYRACUSE, N. Y. ) .

Everybody has observed the difficulty that a little

child has in realizing that it must step over a compara-

tively high object on the floor. It has no notion of

falling. It is delighted and astonished as, from its

eminence on the table, it watches you bend down and

disappear and then rise up again and cry "peek-a-boo."

This inability on the part, of babies to comprehend

a third dimension is well known. Now, very serious

and bespectacled geometricians tell us that perhaps

we, too, are but babies in a space of a fourth dimension,

and that we, too, might be no less astonished if beings

from that world chose to play peek-a-boo with us.

In order to get some notion of the fourth dimension,

let us, first of all, get an idea of the meaning of dimen-

sion. The dictionary gives it as extension in space.

Every material body, such as a tree, a horse, a sheet of

paper, is known as a (physical) solid, and the limited

portion of space it occupies is known as a (geomet-

rical) solid, because it extends «in three directions; and

we speak of every object as having three dimensions

—

length, breadth, and thickness. Yet, although a very

thin sheet of paper is a solid, we can think of its sur-

face only; and, although a tree is a solid, we can think

of its height only, without any reference to its diameter.
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This is true, for we do have the linear measure with its

inch, foot, yard, and we have the square measure with

its square inch, square foot, and square yard. Indeed,

we may get an idea of the cube by drawing, first, a

straight line ; then, another straight line perpendicular

to the first at its extremity, forming a square; and

then a third line perpendicular to the other two at the

same extremity, forming a box or cube, the volume of

which is expressed by the cubic measure, the cubic

inch, cubic foot, and so forth. The same idea can be

gotten from the following definitions in geometry: a

point has position but no magnitude; if a point moves
it generates or traces a line and that has length only;

if a line moves, not along itself, it generates a surface,

which has length and width; if a surface moves, not

along itself, it generates a solid, which has thickness,

besides the other two dimensions.

But, having the solid, our experience does not per-

mit us to go any further. However we move the solid,

we still generate a solid and nothing else. Neverthe-

less, let us be bold and imagine that we move the solid

into a space that it did not previously occupy and

that we make it take an added dimension that it did

not previously have. We now get an object of four

dimensions.

It may be difficult for us to form a conception of a

world of more than three dimensions. Yet it is no

more difficult than to imagine a world confined to only

two dimensions, or than, for beings of such a world, to

form a conception of our space.

For simplicity, let the two-dimensional world be a

plane, though equally well it might be the surface of

a sphere. We may picture to ourselves the mode of

life of the inhabitants of this flat land. They could
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move in any direction along the plane, but they could

not move perpendicularly to it, and would have no

consciousness that such a motion was possible. They
would not be able to turn their heads up or down.

Things about them could be pulled or pushed in any

direction, but they could not be lifted up. People

and things could pass around each other, but they

could not step over anything. Their plane geometry,

however, would be exactly like ours.

In this supposed land, let us draw two straight lines

perpendicular to one another, that is, two straight lines

intersecting at right angles at A. The drawing (Fig.

i) would be as perfectly conceivable to our plane

beings as it is to us. But suppose

we asked them to draw a third line

perpendicular to the other two lines

at the same point of intersection A.

Fig. i. That would seem absurd and impos-

sible to them, just as it would be to

us if we had to draw the required third line on the

paper. But with this condition removed, we can

leave the plane surface of the paper and draw the

third line through the paper perpendicular to the sur-

face at A, just as we might stick a pin at A vertical to

this page.

So, too, with us, when we have a cube after drawing
three mutually perpendicular lines, and are required to

draw a fourth line passing through the same point, per-

pendicular to all of the three lines already there.

In our space the problem is absurd and impossible.

Our conceptions do not admit of more than three

dimensions. But for a being that could conceive of

a fourth dimension the problem would be easy. He
would simply draw the line through that space.
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Our conscious life is in three dimensions, and natur-

ally the idea occurs whether there may not be a fourth

dimension. No inhabitant of flatland could realize

what life in a world of three dimensions would mean.

Yet, if he were intellectual, he might be able to extend

the analytical geometry that applied to his world, so

as to obtain results true for a world in three dimen-

sions, a world that would be unknown and incon-

ceivable to him. Similarly, we cannot realize what

life in four dimensions is like, though we can use our

analytical geometry to obtain results true of that world

or even of worlds of higher dimensions. Moreover,

the analogy of our position to the inhabitant of flat-

land enables us to form some idea of how the inhabit-

ants of space of four dimensions would regard us.

If we placed a dweller of flatland inside a circle,

or inside a rectangle drawn on his plane, he would be

as truly imprisoned as we are in a closed prison cell.

He would go all around, and, finding every inch of it

closed, he would simply despair of getting out, unless

he could break through it. On account of his limited

conceptions, he could not possibly understand how we
might step over the boundary. He could form no

notion of the trick. But we should simply step over

the line and reappear on the other side. So, if Ave,

confined within the six surfaces of a dungeon, a being

able to move in the fourth dimension, he would step

outside of the cell without breaking any part of the

walls, ceiling or floor. He would do it as easily as we
could pass over the circle drawn on a plane without

touching it—so wonderful to our friend in flatland.

Our new being, the fourth-dimensional one, would

simply disappear from our view like a spirit and then

reappear again outside the prison. He would only
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have to pass through the fourth dimension. Of course,

no such a case has as yet been reported.

Let us continue our analogy further. We know that

the cross-section of a line is a point ; that of a surface,

a line; and that of a cube, a surface. Hence, if a

fourth-dimensional object were cut crosswise its sec-

tion would be a cube; that is, a four-dimensional object

'B C A
Fig. 2. Fig. 3.

is bounded on all sides by solids. Again, on a line

we can find two points equidistant from each other ; for

example, the points B and C with the single distance

BC (Fig. 2). In a plane, we can find three equidistant

points, as the vertices of an equilateral triangle in

which AB — BC= CA ( Fig. 3 ) . In our space, four

equidistant points can be located, the vertices of a

tetrahedron, that is, a pyramid having four triangular

faces. Hence, in four-dimensional space it should be

possible to find five equidistant points. Further, rota-

tion in a plane takes place about a point ; in our space,

about an axis, as shown in Fig. 4. Hence, in four-

dimensional space, rotation should take place about a

plane.
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This last point—rotation—leads to a curious geo-

metrical application of the principle. We have in Fig.

5 two triangles, of which the sides' and angles of the

one are equal to the corresponding sides and angles

of the other. We can lift one triangle up and turn

it over on the other so that the two triangles fit

exactly together. But, mind, we could not do it other-

Fig- 5-

wise than by lifting. Hence, these two triangles could

never be fitted together by the mathematicians of flat-

land, since to them lifting is inconceivable. Possibly,

however, they might suspect this method by noticing

that an inhabitant of one-dimensional space—say, for

simplicity, one living on .a straight line—might expe-

rience a similar difficulty in comparing the equality of

A B C B> A'
1 ) ,

Fig. 6. Fig. 7.

two segments, AB and B'A' (Fig. 6), each defined

by a set of two points. We may suppose that the seg-

ments are equal and so that the corresponding points

in them could be superposed by rotation round C.

This movement, so simple to a flatlander, would be

inconceivable to our one-dimensional being. In fact,

even if he were moving along the lines from A to A'

,
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he would not arrive at the corresponding points in the

same relative order, and thus might hesitate to believe

that the corresponding distances were equal. So, judg-

ing from this being's difficulties, the dweller of the

plane might infer, by analogy, that by turning one of

the triangles over through three-dimensional space the.y

could make them coincide.

We have a somewhat similar difficulty in our geome-

try. Let us suppose two pyramids (Fig. 7) similarly

related. All the faces and angles of the one corre-

spond exactly to the faces and angles of the other.

Yet lift them about as we please, we could never fit

them together. If we fit the bases together, the two

will lie on opposite sides, one being below the other.

Again, we may conceive of two solids, such as a

right hand and a left hand, which are exactly similar

and equal, but of which one cannot be made to occupy

exactly the same position in space as the other does.

These are difficulties similar to those experienced by

the inhabitants of flatland in comparing the triangles.

But it may be conjectured that in the same way as

such difficulties in the geometry of an inhabitant in

space of one dimension are explicable by moving the

figure temporarily into space of two dimensions by

means of rotation round a point, and as such difficul-

ties in the geometry of flatland are explicable by

moving the figure temporarily into space of three

dimensions by means of rotation round a line, so such

difficulties in our geometry would disappear if we
could temporarily move our figures into space of four

dimensions by means of rotation round a plane—

a

movement quite inconceivable to us. That is, the

dweller in four-dimensional space would take our

troublesome pyramids and fit them together without
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any trouble. By merely turning over one of them he

would convert it into the other without any change

whatever in the relative positions of its parts. What
he could do with the pyramids he could also do with

our hands or our right shoe and left shoe, or, in fact,

with one of us human beings, if we allowed him to take

hold of us and turn a somersault with us in the fourth

dimension. We should then return to our own space

and appear as changed as when our natural form is

seen in a mirror. Everything on us would be changed

from right to left, even the seams of our clothes, and

every hair on the head. And through the whole pro-

cess no change would occur in the relative positions of

the parts of the body.

To sum up, then, we may say that the fourth dimen-

sion is an extension in a space unknown to us and in a

direction outside of those we can conceive. The idea

is to us incomprehensible. We have no positive proof

of its existence. But, inconclusive and insufficient as

are the results, we can get a notion of the fourth dimen-

sion by attending to the corresponding step that the

plane being would have to take in forming an imagin-

ary construction of our space. Also, we considered

how this inhabitant of flatland might find arguments to

support the view that space of three dimensions existed,

and then we saw whether analogous arguments applied

to our world. Right around us, but in a direction that

we can no more conceive than the flatlander can con-

ceive a direction perpendicular to his plane, there may
exist, then, another universe, or any number of uni-

verses. All that physical science can say against this

supposition is, that even if a fourth dimension exists,

it must forever remain unknown to us in our natural

condition.
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In conclusion, it may be said that the growth of this

"fairyland of geometry" has been greatly influenced

by the theory of parallels, which theory is the result of

an attempt to prove that through a point only one

line can be drawn parallel to another line—this being

taken for granted in our plane geometries. Ignoring,

then, this accepted truth, Lobachevsky, a Russian

geometer, and the Hungarian Bolyai constructed, about

1830, a geometry in which more than one line can be

drawn through a point parallel to another line. The
term applied to it is "metageometry," and its study

has stimulated the development of the geometry of

hyperspace, of which the fourth dimension is but a

special case.

Furthermore, attempts have been made to find, in the

space of four dimensions, explanations of certain

difficulties or apparent inconsistencies in physical sci-

ence. Thus, the behavior of the atoms in certain carbon

compounds has been attributed to their motion in the

fourth dimension. Attempts have also been made to

explain the properties and constitution of matter by

means of space of four dimensions. One writer has

even argued thus : If a finite solid were passed

slowly through flatland, the inhabitants would be con-

scious only of that part of it which was in their plane

;

that is, they would see only a surface, or the section-

of the solid by their, space. They would see the shape

of the object gradually change and finally vanish. In

the same way, if a body of four dimensions were passed

through our space, we should be conscious of it only

as a solid, namely, the section of the body by our space

;

and as it moved along, we should see its form and

appearance gradually change and finally vanish, per-

haps. So he suggested that the birth, growth, life,
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and death of animals may be explained thus, as the

passage of finite four-dimensional bodies through our

three-dimensional space. Again, the idea of a fourth

dimension has been made ridiculous by the suggestion

that spirits probably dwell in that dimension and can

appear to us and disappear at pleasure, thus offering

an explanation for the so-called phenomena of spirit-

ualism. But whatever else we may think of these

theories, we can certainly admit the possibility of a

fourth dimension, even if it be only for the sake of

"mental gymnastics."
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XXII.

THE PROPERTIES OF FOUK-DIMENSIONAL
SPACE.

BY "SYLVESTER" ( MAJOR WILMOT E. ELLIS, COAST

ARTILLERY CORPS, U. S. A.).

Dimension as applied to space signifies extension.

These extensions are measured in directions mu-
tually perpendicular to one another, and the number
of dimensions is determined by the number of inde-

pendent perpendicular directions that can exist in the

given space.

To illustrate: In Fig. i,

assume that ZO is a line

drawn from the center of a

sphere to the surface. All

points in the line, from an

assumed origin, , to infinity

in either direction could be

represented by giving differ-

ent values to one variable,

as z, and using the proper

sign, plus or minus.

Imagine that the line ZO is the only space in exist-

ence, and that a mathematical intelligence is concen-

trated in the point Q lm It would have one sense of

direction only, an "up-down" sense, for it could form

no conception of any motion perpendicular to its line.

From these two premises (the one algebraical, and the

other geometrical), it follows that a line is a one-

dimensional space.

FfG.l
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At the point erect OX perpendicular to OZ. A
plane passed through these two lines will cut a circle

ZOR from the sphere. The mathematical intelligence

in this case may be represented by the square Q 2 . We
may imagine it confined in the plane to the immediate

proximity of the circumference of the circle ZOR,
just as our habitat is located in the immediate vicinity

of the surface of the earth. Q 2, however, has one more
space perception than Q 1} for the former, in traveling

its circumference, adds a sense of "forward-backward."

Q 2 can move in either direction, OZ or OX. These two
directions may be assumed at pleasure in the plane,

but having assumed arbitrarily any one direction, only

one other perpendicular direction can exist in the plane.

Every point in the plane of ZOX may be reached by
giving proper values to two variables, x and z. Hence,

a plane is a space of two dimensions.

If, at the point O , we draw a perpendicular OY to

the plane of ZOX, we determine a new space of three

dimensions. The mathematical intelligence, now rep-

resented by the cube Q z, has the added perception of

"right-left."* This is "our" "solid" space. The essen-

tial characteristic of this space is that, at each point,

any number of three independent perpendicular direc-

tions may be determined, but no more than three. All

points in "our" space may be located by giving different

algebraical values to three variables, as x, y, and z.

Let us assume that at the point O a fourth line, OW

,

could be drawn perpendicular to the three axes, OX,

*In this discussion, the " up-down" sense, associated with the attraction

of gravitation, has been assumed as our primary sense of direction, because

most of our physical perceptions are either directly or indirectly referred to

gravitative force. It should be remembered, nevertheless, that the order of

development of the three senses is immaterial, as the gravitative direction

has no significance in geometry.
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OY, and OZ. We should thus determine a four-

dimensional space, and the mathematical intelligence,

Q 4 , dwelling therein, would have a new perception of

direction, which, for the lack of a better name, we may
call the "w" sense. We cannot represent the "w" direc-

tion in a figure, nor Q 4 by any known geometrical form.

Since every line whatsoever in "our" space may be

regarded as belonging to some set of axes, it follows

that the "w" direction must be perpendicular to all

lines in three-dimensioned space, in effect perpendicular

to the space itself.

We are absolutely lacking in the "w" sense. The
key to this direction is concealed from the mathematical

genius as well as from the schoolboy. The question

naturally arises : Is this limitation a human limitation

only, or is there something inherent in what we might

term "absolute reason" that precludes the idea of the

fourth and higher dimensions? It is at least possible

that the limitation exists in human reason alone. Gen-

eral geometry, both pure and analytical, ascends from

zero to any number of dimensions without any break

to betray the passing of the third dimension.

If we accept a "w" direction, definitely abandoning

all hope of mentally representing it, we can investigate

the properties of four-dimensioned space as satisfac-

torily as we can those of three dimensions. Our only

method of investigation must be analogy, but we shall

find that it will not once fail us. Following this line

of inquiry, we may develop the following properties of

four-dimensioned space

:

i. A line includes an infinity of points, or zero-

spaces; a surface, an infinity of lines, or i -spaces;*

*For brevity, i-space, 2-space, etc., will be frequently used to signify one-

dimensioned space, two-dimensioned space, etc.
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and a solid, an infinit}^ of surfaces, or 2-spaces. We
are justified in concluding, therefore, that a 4-space

includes an infinity of 3-spaces. A 3-space is but one of

many in a 4-space, and a fourth-dimensional intelli-

gence would view "our" 3-space as an insignificant part

of his 4-space.

2. In analytical geometry, it is shown that any point

in 1 -space can be represented by an equation of the

general form x= a ; a line in 2-space by the general

equation ax + by= c ; and a plane in 3-space by the

general equation ax + by -f cz= d. So in 4-space, a

3-space may be represented by the general equation

ax + by + cz + dw= e.

3. In 2-space, three points can be so located as to

have any arbitrary distance between pairs of points; in

3-space, four points can be so located ; and in 4-space,

five points. As illustrations, for conditions of equal

distances, we have the equilateral triangle in 2-space,

and the regular tetrahedron (regular pyramid), in 3-

space.

4. As a line is generated by the motion of a point,

a surface by the motion of a line, a solid by the motion

of a surface, so a fourth-dimensional body may be

generated by some motion of a solid.*

5. A polygon is bounded by three or more lines; a

polyhedron, by four or more polygons, and a fourth-

dimensional body by five or more polyhedrons.

6. In 2-space, rotation can take place only about a

point ; in 3-space, about a line ; and in 4-space, about a

plane.
.

* Mathematicians have demonstrated that in 4-space, there should be six

regular structures corresponding to the five regular polyhedrons of 3-space.

For example, the analogue of the cube is bound by 8 cubes, with 16 corners, 24

squares, and 32 edges. These structures can only be vaguely conceived by
the most imaginative mathematicians.
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7. Two geometrical magnitudes are said to be sym-
metrical, when every point of the one has a correspond-

ing point at the same distance on the opposite side of

an assumed spatial reference. The symmetry here de-

fined is what is known as two-fold. It is not necessary

to consider other kinds of symmetry. In one dimen-

sion, symmetry exists with respect to a point; in two
dimensions, with respect to a line ; in three dimensions,

with respect to a plane. An object and its mirror reflec-

tion are always symmetrical. Such figures are equal,

but to prove their coincidence, it is necessary to turn

one of them around, "upside down," or "inside out,"

as the case may be. This process is called circumver-

sion.

8. In order to circumvert a figure, it must be turned

around or maneuvered in the next higher dimension.

Thus, a line must be turned through a plane, a polygon

through 3-space, and a solid through 4-space.*

Let us assume, for purposes of illustration, that a

two-dimensional world and a four-dimensional world

has each a separate existence. We must further postu-

* If an intelligence capable of visualizing 4-space exists in any realm of

the universe , it is more than probable that n dimensions exist for an «th

order of intelligence. The eight properties herein postulated of the fourth

dimension may be thus generalized, rectilinear figures only being considered:

1. An «-space includes an infinity of (n — 1) spaces.

2. In a space of n dimensions, an (n — 1) space may be represented by an

equation of the first degree containing n variables.

3. In an w-space, n-\-T points may be located so as to have any arbitrary

distance between pairs of points.

4. An nth dimensional figure or space may be generated hy some motion
of an (n - i)th dimensional figure or space.

5. An wth dimensional figure is bounded by n -(- 1 or more figures of n —

I

dimensions.

6. In an w-space, rotation can take place onl\- about a space of (n — 2)

dimensions.

7. In an w-space, symmetry exists with respect to an (w — 1) th space.

8. Circumversion in an w-space can be effected only by a movement
through an (n -\- 1) space.
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late that the 2-world and our world have small, but

real extensions in the third and fourth dimensions, re-

spectively. Without these extensions, an imaginary

visitor from one world to the next lower could not per-

form his mysterious feats. Let us also represent con-

crete mathematical intelligences of the 2-world, 3-

world, and 4-world by Q 2 , Qz, and Q 4, respectively.

Each of these imaginary beings is supposed to have an

intelligence and dimensions corresponding to his own
world.

If Q 3 should visit a 2-world, he would be perceived

by Q 2 as two-dimensional. For example, if the visitor

were cubical in shape, every part would be invisible to

Q 2 , except the square base of contact. Q 2 could not

understand how a coin, "head-up," could be turned

"tail-up." Q 3 could easily perform the feat, either by

taking the coin into his own space, turning it, and

restoring it, or by turning it around a chord of the

circular coin as an axis. The maximum element of

the circle that could possibly remain visible to Q 2 during

the transformation would be a single diameter. Simi-

larly, if Q 4 should visit our world, he would appear as

a three-dimensional being. He could turn a sphere

"inside out," either by withdrawing it to his own space,

or by revolving it through his space around a circle of

the sphere remaining in our space.* The maximum
element of the sphere that could be seen during any

such operation would be a great circle.

Again, if Q 2 were inside the bounding line of any

figure, as the circumference of a circle, he could not

reach the outside without breaking through. Q 3 , by

first moving normal to the plane, could pass out and

in at will, without penetrating the boundary. So, in

* This process does not turn the sphere inside out. See introduction, page 28.
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our world, Q 4j, by moving in the "w" direction, could

pass in and out of a solid sphere without breaking

through the surface.

Q 2 could make a simple loop in a string,* but so long

as he kept the string intact and the ends fastened, he

could not straighten it. Q ?J
could do this, however, by

lifting the loop into his space, untwisting it, and restor-

ing the string. The corresponding maneuver with us

would be the untying of an ordinary ( "thumb" ) knot,

without disturbing the fastened ends or cutting the

string. Q s would have to evoke Q 4 to solve this

problem.

It is interesting to note that Slade (who was eventu-

ally exposed) performed the trick of passing a grain

of corn through the solid surface of a glass sphere, and

that of untying a knot, as described in the preceding

paragraph. The celebrated mathematician, Zollner,

witnessed these two performances, and appears to have

believed that Slade was assisted by fourth-dimensional

"spirits."

Q 2 regards the symmetrical triangles of Fig. 2 as

different shapes, because he cannot possibly make them

coincide. He perceives a disposition of the one with

respect to the other exactly analogous to the one we
perceive with respect to "right-handed" and "left-

handed" shapes. Q 3 proves that the triangles are equal,

* See foot-note, page 30.
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by moving them until AB and ab coincide, and then

rotating one about the line AB-ab, until it falls upon
the other. During this rotation, the moving figure is

turned "upside down."

If Q h views ABC from above the plane of the paper,

he obtains one aspect of the triangle. If he views ABC
from a point the same distance below the plane of the

paper, he obtains the other (the abc) aspect. We see

then that Q a 's conception of symmetrical shapes, as but

two aspects of one shape, results from his freedom of

movement in a direction normal to Q 2 's space.

We sense a right glove and a left glove as different

shapes, yet we have an intuitive feeling they ought to

be the same figures. If one turns a right glove inside

out, it becomes a left glove, and vice versa. Q 4 can

perform this transformation, when the gloves are closed

surfaces. If he rotates a right glove a half-turn

through his space, it becomes a left glove, the rotating

glove being necessarily turned "inside out" during the

movement.*

Suppose that Q 4 should view a glove from two

points, the one "above," and the other a corresponding

position "below" our space. From one point of view,

the glove will appear to him as a right glove, and from

the other point of view, as a left glove. He recognizes

no difference whatsoever between "outside" and "in-

side," except one of aspect. It is for this reason that

the passage from what we call the "inside" of a sphere

to the "outside" does not necessarily involve the pene-

tration of the surface. This attribute of Q 4's intelli-

gence results from his ability to conceive and move in

what we have called the "w" direction. If I were

* See foot-note on page 247. It is not the "outside" and "inside" that Q4

sees above and below our space, but two new sides.—H. P. M.
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ever able to see a right glove as a left glove (except in

a mirror), I should know that I possessed a fourth-

dimensional intelligence, and could move with perfect

freedom in the "w" direction.

It should be noted that if two symmetrical figures be'

rotated a quarter-turn toward each other through the

next higher space, they will coincide. From this point

of view, symmetrical figures may be regarded as re-

sulting from a splitting of one figure in a given space,

and an unfolding into the next lower space.

With the possible exception of symmetry existing in

our world, we have no evidence of the real existence

of a 4-world in the finite, and no evidence whatever in

the direction of the infinite.

We know that the ether, although it eludes all of our

senses, envelopes and permeates our phenomenal world.

We feel in some vague, intuitive way, that it is the

medium connecting us with a higher order of existence

and thought. In the ether, if anywhere, we should

expect to find some fourth-dimensional characteristics.

Gravitation, electricity, magnetism, and light are

known to be due to stresses in, or motions of, the

infinitesimal particles of the ether. The real nature of

these phenomena has never been fully explained by

three-dimensional mathematical analysis. Indeed, the

unexplained residuum would seem to indicate that so

far we have merely been considering the three-

dimensional aspects of four-dimensional processes.

As one illustration of many, it has been shown

both mathematically and experimentally that no

more than five corpuscles may have an independent

grouping in an atom ; a most significant fact, in view

of our third "property" of 4-space.

The fourth dimension has an ethical and philbsophi-
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cal as well as a mathematical and physical value. The
idea reveals many fruitful fields of speculation. As
examples may be cited the stupendous significance of

the first "property" of 4-space, and a pondering of the

question : Might not birth be an unfolding through

the ether into the symmetrical life-cell, and death the

reverse process of a folding-up into fourth-dimensional

unity ?
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